
AD-A232 289

RADC-TR-90-101, Vol I (of three)
Final Technical Report
June 1990

DECENTRALIZED COMPUTING
TECHNOLOGY FOR FAULT-TOLERANT,
SURVIVABLE C31 SYSTEMS

Carnegie-Mellon University D T IC
MARO 5 1931 U

Sponsored by 5
Strategic Defense Initiative Office

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the Strategic
Defense Initiative Office or the U.S. Government.

Rome Air Development Center
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700

91 3 01 011

This report has been reviewed by the RADC Public Affairs Office (PA) and is
rf.leasable to the National Technical Informati.-n Service (NTIS). At NTIS it will be
releasable to the general public, including foreign nations.

RADC-TR-90-10I, Vol I (of three) has been reviewed and is approved for
publication.

APPROVED:
//

THOMAS F. LAWRENCE
Project Engineer

APPROVED:

Raymond P. Urtz, Jr.
Technical Director
Directorate of Command and Control

FOR THE COMMANDER: / -

IGOR G. PLONISCH
Directorate of Plans and Programs

If your address has changed or if you wish to be removed from the RADC mailing list,
or if the addressee is no longer employed by your organization, please notify RADC
(COTD) Griffiss AFB NY 13441-5700. This will assist us in maintaining a current
mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document requires that it be returned.

DECENTRALIZED COMPUTING TECHNOLOGY
FOR FAULT-TOLERANT, SURVIVABLE C I SYSTEMS

3. Duane Northcutt E. Douglas Jensen
Edward 3. Burke Raymond K. Clark
James G. Hanko Donald C. Lindsay
David P. Maynard Franklin D. Reynolds
Samuel E. Shipman Jack A. Test
Jeffrey E. Trull

Contractor: Carnegie-Mellon University
Contract Number: F30602-85-C-0274
Effectiv'e Date of Contract: 29 Aug 85
Contract Expiration Date: 30 Dec 88
Short Tkie of Work: Decentralized Computing Tech-

nology for fault-Tolerant,
Survivable C I Systems

Period of Work Covered: Aug 85 - Dec 88
Principal Investigator: E. Douglas Jensen

Phone: (508) 393-2989
Project Engineer: Thomas F. Lawrence

Phone: (315) 330-2158

Approved for public release; distribution unlimited.

This research was supported by the Strategic Defense Initia-
tive Office of the Department of Defense and was monitored
by Thomas F. Lawrence (COTD), Griffiss AFB NY 13441-5700,
under contract F30602-85-C-0274.

PMwr tmw bmm n Nor Im asin Vdi~m a mi I4 !Wig*mmmm~d I S bh"m 911 ;= 9* WO Is 01,mm I h1Ia1 .4 YWm.W see.a ~of 9 &

SW OVm of v~wimo WW PAPssor Aftmrs. 4o M~ara rit aM Bu~e vemmim~en DC 20683

A7DCOM PUTING TECHNOLOGY FOR FAI. LT- T~1F- C -0 2 7CO2 4
TOLERANT, SURVIVABLE C I SYSTEMS P E - 6 3 2 _3 C

PR -2300

S. AUTHORS) 3. Duane Northcutt, E. Douglas Jensen,TA-0
Edward J. Burke, Raymond K. Clark, James G. Hanko, \XU - 10
Donald C. Lindsay, David P. Maynard, (Cont'd)

7PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) & PERFORMING ORGANIZATION

Carnegie-Mellon UniversityREOTNMR
Pittsburgh PA 15213-3890

9 SPONSORINGA4OMRING AGENCY NAME(S) AND AODRESS(ES) lo SPONSORiNG4MONITORiNG AGENCY

Str tegic Defense Initiative RPFrNME

Office, Office of the Rome Air Development Center (COTD, RADC-TR-90-1011, Vol I
Secretary of Defense Griffiss AFB NY 1344 1-5700 (of three)
Wash DC ?0301-7100

11 SUPPLEMENTARY NOTES

RADC Project Engineer: Thomas F. Lawrence/COTD/(315) 330-2158

12& OISTRIBUTIONAVAILABLITY STATEMENT 12b DISTRIBUTION CODE

Approved "or public release; distribution unlimited.

13 ABSTRACT (#MXNWzm 2O moove)

,Alpha is an operating system for the mission-critical integration and operation ot large,
complex, distributed, real-Jime systems. Such systems are becoming increasingly common in
both military (e.g., BM/C , combat platform management) and industrial factory and plant
automation (e.g., automobile manufacturing) contexts. They differ substantially from the
better-known timesharing systems, numerically-oriented supercomputers, and networks of
personal wvorkstat ions. More surprisingly, they also depart significantly from traditional real-
time systems, which are predominately for low-level periodic sampled data monitoring and
control.

14 SUSJECTTERMS 15 NUMBER OF: PAGES
Real-Time System Decentralized Control 2 16
Distributed Operating System Fault-Tolerance 16 PRICE CODE

1I SECUR17Y CLASSIF iCAT ON 18 SECURITY CASSIFICATION~ 19 SECUARy CLASSIFICATION 20 LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE UF A BS TRACTI

UJNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR
NSt4 71540.CI.2SO-5500 banwra orr' zivo

prrnsated by ANSI Sid 21 I Am" 0

6 (Cont'd). Franklin D). Reynolds, Samuel E. Shipman, Jack A. Test, Jeffrey E. Trull

Contents

Preface

Part A: Alpha Overview

Part B: Alpha Requirements and Rationale

Part C: An Example Real-Time Command, Control and Battle
Management Application for Alpha

Accession For
NTIS GPA&I

DTIC TAB 0
Unann ucnced
Just if lcat ion

By-

Availability Cedes

Avail and/or

Dist SpialTn

Final Technical Report

ii Preface

Preface
This is the final technical report for contract number F30602-85-C-0274 from the USAF

Rome Air Development Center, COTD, covering the period from 1 September 1985 to 31
December 1988. This contract is part of the support for the Archons Project, which is per-
foring research on concepts and techniques for decentralized computing systems. The
contract Principal Investigator during the period from 1 September 1985 to 1 October 1987
was E. Douglas Jensen, who is now leading the Archons project from the Concurrent
Computer Corporation. This contract's Principal Investigator and Program Manager for
the period from 1 October 1987 to 31 December 1988 was J. Duane Northcutt.

This report provides an overview of the Alpha real-time decentralized operating sys-
tem technology that is being created as part of the Archons Project research. Alpha is
the first systems result of the Archons Project, and is a unique operating system focused
specifically on real-time command and control applications---e.g., combat platform and
battle mnagement.

This report is divided into three parts:
* Alpha Overview
" Alpha Requirements and Rationale
" An Example Real-Time Command, Control and Battle Management Application

for Alpha

Final Technical Report

Alpha Overview A-i

Table of Contents

1 Introduction .. A -2

2 Key Technical Requirements and Approaches ... A-3
2.1 Technical Requirements Summary ... A-3
2.2 Real-Time ... A-4

2.2.1 Time Constraints .. A-4
2.2.2 Exceptions .. A-7
2.2.3 Determinism ... A-8
2.2.4 Guarantees .. A-8
2.2.5 Summ ary of Real-Tim e in Alpha ... A-8

2.3 Distribution ... A-9
2.3.1 Distributed Operating Systems .. A-9
2.3.2 Distributed Applications .. A-10
2.3.3 Distributed Resource M anagement .. A-10

2.4 Survivability .. A-11
2.5 Adaptability .. A-12
2.6 Prograrrming M odel ... A-13

2.6.1 Objects ... A-13
2.6.2 Operation Invocation ... A-13
2.6.3 Threads ... A-14
2.6.4 Real-Time Transaction M echanisms ... A-14
2.6.5 Comparison W ith Other M odels .. A-16

3 System Structure .. A -18

4 Status and Future Plans .. A -20

5 Acknow ledgm ents .. A -22

6 References ... A -23

Final Technical Report

A-i Alpha Overview

List of Figures

Figure 1 A Time-Value Function .. A-5
Figure 2 Variable Time-Value Function ... A-6
Figure 3 Set of Time-Value Functions .. A-6
Figure 4 Conventional Distributed Operating System A-9
Figure 5 Distributed Application on a Conventional DOS A- 10

Figure 6 "Decentralized" Operating System ... A-li
Figure 7 Example Alpha Object .. A- 14
Figure 8 An Alpha Thread and its Attributes .. A- 15
Figure 9 Example of Alpha's Object/fhread Programming Model A- 16
Figure 10 Alpha Releases 2 and 3 Structure ... A- 18
Figure 11 Alpha OS Prototype (Release 1) Testbed A-19
Figure 12 Alpha OS Release 2+ Initial Testbed ... A-20

Final Technical Report

Alpha Overview A-]

Abstract
Alpha is an operating system for the mission-critical integration and operation of large,

complex, distributed, real-time systems. Such systems are becoming increasingly com-
mon in both military (e.g., BM/C3, combat platform management) and industrial factory
and plant automation (e.g., automobile mantifacturing) contexts. They differ substantially
from the better-known timesharing systems, numerically-oriented supercomputers, and
networks of personal workstations. More surprisingly, they also depart significantly from
tradizional real-time systems, which are predominatcly for low-level periodic sampled da-
ta monitoring dtd control.

The most challenging technical requirements dictated by this application domain are in
the areas of: satisfying critical real-time constraints despite the system's inherently sto-
chastic and nondeterministic nature; system-wide (inter-node) run-time resource man-
agement in support of distributed programming; survivability despite failures and even at-
tacks; and adaptability to a wide range of ever-changing requirements over decades of
use. Previous attempts to address this problem space have produced custom, special-
purpose operating systems; for Alpha to satisfy these requirements as a standard, multi-
purpose product entails the creation of much unorthodox technology. This includes: using
actual application-specified task completion time constraints and functional criticalities
directly to manage all resources; employing "best effort" scheduling algorithms which ac-
comodate hard and soft time constraints, dynamic dependencies, and overloads; optimiz-
ing performance for the high stress, mission-critical exception cases (such as emergen-
cies), ratXl,,r than for the most frequent, routine, cases; supporting consistency of distrib-
uted data and correctness of distributed actions, within both the OS and the application,
through real-time transaction mechanisms in the kernel which independently provide ato-
micity, application-specific concurrency control, and permanence act~ording to higher level
policies; and an object-oriented distributed programming model based on threads which
coss object and (transparently and reliably) node boundaries, carrying attributes such as
urgency, importance, and reliability, to facilitate global resource management.

Alpha embodies results from nine years of research performed by the Archons Project
at Carnegie Mellon University's Computer Science Department, where a prototype was
built from 1985 to 1987. General Dynamacs/Ft. Wo,-th has sucessfully , and dem-
onstrated real-time application software on another copy of the system there. Alpha re-
search is ongoing at CMU, and is starting at MIT and several industrial institutions. Now
the Alpha effort is led by Concurrent Computer Corporation, where it continues to be
sponsored in part by DoD. A series of increasing functionality, next-generation designs
and implementations on MIPS-based multiprocessor nodes interconnected with FDDI
will be delivered to various Government and industry labs for experimental use beginning
in 1990. Concurrent and its strategic partners also plan to provide additional versions of
Alpha, including a multilevel secure version, a Posix-compliant version, and a subset ver-
sion optimized for conventional low-level sampled data subsystems. Alpha is non-propri-
etary and portable, and will be the basis for future commercial OS products from Concur-
rent and other corporations.

Final Technical Report

A-2 Alpha Overview

1 Introduction
The Alpha operating system project [Jensen 88c] is an uncommon blend of both re-

search and development. Alpha initially arose from Jensen's Archons Project to create
new paradigms for real-time distributed computer systems at Carnegie-Mellon Universi-
ty's Computer Science Department [Jensen 79, Jensen 84]. It formed the systems con-
text for designing, implementing, and empirically evaluating unconventional ideas in real-
time distributed operating systems. The Alpha prototype was started in 1984, and has
been fully operational there since 1987 [Northcutt 87]. It runs directly on the bare hard-
ware of multiprocessor nodes built from modified Sun Microsystems boards and intercon-
nected with Ethernet. It is also installed at General Dynamics/Ft. Worth; it was the ba-
sis for their proposed mission management OS onboard the Advanced Tactical Fighter,
and in addition they have successfully written and demonstrated real-time distributed
battle management/C2 application software on it [Clark 88, Northcutt 88c].

The focus of Alpha activity moved with its Principal Investigator to Concurrent Comput-
er Corporation's Westford (Boston) MA facility when they merged with MASSCOMP in
the Fall of 1988. It continues to be funded in part there by DoD. Concurrent's own indus-
trial research efforts are also complemented by academic research on Alpha-related top-
ics at CMU and (beginning in Fall 1989) MIT, supported both by DoD and Concurrent.
Alpha is non-proprietary and in the public domain for U.S. Government use; it is portable,
and source as well as binary licenses will be available for commercial purposes. Alpha's
current status and future directions are summarized at the end of this report.

Final Technical Report

Alpha Overview A3

2 Key Technical Requirements and Approaches

2.1 Technical Requirements Summary
The Alpha OS is specifically optimized for performing the mission-critical integration

and operation of large, complex, distributed real-time systems [Jensen 88b]. This encom-
passes: real-time supervisory control-for example, mission (and sometimes Nehic!e)
management of combat platforms in subsurface (e.g., Seawolf), surface (e.g., Aegis,
[Jensen 76b]), air (e.g., ATF), and space (e.g., BSTS) environments, together with bat-
tle management (e.g., SDI's SDS); plus real-time decision support and information man-
agement-for example, C3. Typical application functions in the DoD context include scn.-
sor management, multisensor data correlation .lnd fusion, track initiation and mainte-
nance, object identification, situation awareness, threat evaluation, engagement planning,
force coordination, stores management, weapons assignment, weapons guidance, and kill
assessment.

The characteristics of this application domain differ substantively in almost every' re-
spect from those of the more widely known non-real-time systems, such as networked
personal productivity workstations and throughput-oriented numerically-intensive com-
puters. What may be surprising is that these characteristics also depart dramatically
from those of the traditional real-time context-relatively small, simple subsystems for
low-level sampled data monitoring and control (e.g., signal processing, avionics flight
control). The mission-critical integration and operation of large, complex, distributed real-
time Nystems (which we will henceforth abbreviate as simply "SIO") is a completely dif-
ferent, and much more difficult, kind of OS problem compared with conventional real-time
systems.

Many of these differences and difficulties stem from the fact that SIO is supervisory lev-
el-the data sources and sinks are primarily not sensors and actuators but instead low-
level sampled-data subsystems, man-machine interface subsystems, and interconnec-
tions to other systems [Boebert 78]. System integration and operation applications in-
volve the OS carrying out activities such as: global resource management; control and co-
ordination; fault, error, and failure recovery; interoperability with lower level and higher
level systems; performance evaluation; and man/machine interface. Thus, the application
and OS tasks are predominantly aperiodic and asynchronous rather than simply cyclic,
and still they have time constraints which are critical to the degree of mission success.
The system's large size, distribution, and complexity also contribute to the challenging
problems-its behavior is intrinsically dynamic and nondeterministic (although this may
not necessarily be directly visible as such to the application). Consequently, stochastic
demand for resources frequently exceeds the supply, so conflicts (e.g., dependencies. pre-
cedence constraints) inevitably occur, and must be resolved, at execution time.

These attributes of the SIO domain are manifest primarily in four areas of operating
system technical requirements [Northcutt 88a]:

* Real-Time: meeting as many as possible of the most important aperiodic as well
as periodic time constraints, despite dynamic and stochastic runtime resource
contention, overloads, and faults

" Distribution: focusing multiple physically dispersed computing nodes on the exe-

Final 7echni~al Report

A-4 Alpha Overview

cution of large, complex, distributed computations to perform a mission

* Survivability: preserving the mission, human life, and property in a hostile envi-
ronment with limited or no repairs or scheduled downtime during missions up to
decades long

" Adaptability: serving a wide variety of applications, each of whose requirements
evolve continuously over a lifetime of decades, on a dynamic technology base.

Each of these four areas is addressed in the following Sections.

2.2 Real-Time
The term "real-time" is most frequently associated with low-level sampled-data moni-

toring and control of periodic physical processes-i.e., dataflow/pipelined signal process-
ing, and sensor/actuator feedback control. The vast majority of these applications are rel-
atively small, simple subsystems (often single-algorithm). Their most distinguishing
characteristic is universally considered to be rigidly deterministic behavior.

The approach taken in Alpha to dealing with real-time in large, complex, distributed
systems is dramatically unorthodox with respect to some of the keystone aspects of tra-
ditional real-time-time constraints, exceptions, determinism, and guarantees.

2.2.1 Time Constraints

In SlO, most aperiodic as well as periodic tasks have time constraints composed of two
orthogonal components-urgency (i.e., time criticality) and importance (i.e., functional
criticality). The historical imposition by OS designers of single-dimensional priorities for
the perceived sake of computational simplicity has lost (or at best, confused) that valu-
able distinction. This has been tolerable in smaller, simpler applications, but as system
size and complexity increase, it accounts for a major portion of disproportionately increas-
ing design, integration, test, and modification costs.

Contrary to popular belief, simply starting tasks as fast as possible (which low latency
interrupt handling and context switching are meant to ensure) is not the OS performance
metric of interest to users. Rapid interrupt response and context switches are necessary
means. but not sufficient. The useful metric is completing tasks at the most valuable
times, neither too early nor too late. In the smaller, simpler applications which dominate
real-time, it is usually more or less feasible to arrange that starting a task quickly im-
plies its timely completion, since static resource management techniques (e.g.,
[Stankovic 87]) assure that there are few, if any, runtime impediments.

For the larger, more complex applications typical of SIO, the requirement is further that
as many as possible of the most important tasks (whether aperiodic or periodic) must
complete as close as possible to their most valuable times; and this despite dynamic re-
source demands and conflicts, overloads, and faults. The application software does not
(and should not) have access to the kinds of system resources necessary to accomplish
all that itself, so the OS must accept responsibility for not just starting each activity, but
also for shepherding it through to completion within a useful timeframe. The customary
notion of priorities is again inadequate for SIO because it is not expressive enough to
convey the meaning of "completion at the most valuable time." Under these difficult but
realistic conditions, an assurance that the OS will always make a "best effort" to

Final Technical Report

Alpha Overview A-5

achieve maximal utility, according to application-defined criteria, from the presently avail-

able assets, is both the strongest one possible as well as a far stronger one than offered
by conventional real-time OS's.

Although SIO includes many mission-critical hard real-time tasks, the majority would
be placed in the "soft real-time" category according to much of the literature (although
there is considerable confusion there on these terms--e.g., between hard real-time tasks
and hard real-time systems). Most academic real-time publications consider "hard real-
time" systems to be those in which every task has a deadline that can never be missed
[Stankovic 88]. Such systems are notable because they permit rigidly stylized, but ana-
lytically tractable, forms of resource scheduling (e.g., rate-monotonic [Liu 73]). However,
almost all real applications not only tolerate some tasks missing some deadlines, but in
fact also desire the robustness of being able to accomodate transient delays and over-
loads-many employ schemes for slipping cycles, adjusting deadlines, apportioning tardi-
ness, re-ordering tasks within rate groups, etc.

In Alpha, the above two problems of priorities are overcome by providing for the man-
agement of resources directly with application-specified actual urgency and importance
constraints. These time constraints are expressed by "time-value functions" for each ac-
tivity [Stewart 77*, Jensen 85, Locke 86], which express the value to the system of com-
pleting a task at any time, as shown in Figure 1. Time-value functions include classical

+ V

Later Sooner

Better Bte
Task/

T

Too Best Too
Early Time Late

T - Task Completion Time

V - Value to the Application for Completing This Task

Figure 1. A Time-Value Function

Jensen invented the concept of time-value functions in the context of scheduling tasks in the Safeguard
phased array radar computer system.

Final Technical Report

A-6 Alpha Overview

hard deadlines as a simple special case (a unit value downward step), and also accomo-
date a wide variety of soft (i.e., residual value) time constraints. These functions are de-
rived from knowledge of the application's physical nature-e.g., it is counterproductive to
launch an interceptor when its target is either out of range or too close. Urgency and im-
portance are dynamic (time- and context-dependent), so in Alpha the functions are al-
lowed to change their parameters at runtime. For example, an interceptor course correc-
tion task can have a time-value function which varies in shape as the interceptor ap-
proaches its target, as seen in Figure 2.

3IV V
a a

U . U
e e

Time Time

1. Best time depends on predicted time to intercept
2. Hardness depends on predicted time to intercept
3. Maximum value depends on perceived threat of target

Figure 2. Variable Time-Value Function

Alpha is able to manage all resources, both physical (e.g., processor cycles, primary
and secondary storage, i/o and communication) and logical (e.g., tasks, synchronizers
such as locks and semaphores, transactions), in a coherent manner using the time-value
functions associated with the tasks. The functions for all contending tasks are evaluated
collectively, and then the tasks are scheduled so as to maximize the cumulative value to
the system for the entire time span they cover; see Figure 3.

Expected Run Time
A mm Value to the System

a A ,,,,,,,,,
U

C, Time

Figure 3. Set of Time-Value Functions

Resource management using time-value functions does exact a price, but it can be high-

Final Technical Report

Alpha Overview A-7

ly cost-effective for SIO applications-the resources consumed by the OS for this pur-
pose can yield greater value to the application than if those resources were consumed di-
rectly by the application [Trull 88]. In Alpha systems, a large part of that price can be
paid in the cheap currency of hardware if desired: a dynamically assigned processor, a
dedicated processor, or a special-purpose hardware accelerator (similar to a floating
point co-processor) [Jensen 81 a].

Time-value functions can also be used to represent "imprecise computations" [Lin 87].

2.2.2 Exceptions

Standard practice in traditional real-time systems is to design and define away as
many runtime exceptions as possible for the end of maximally deterministic behav-
ior--e.g., it is usually asserted that no deadline will ever be missed, so no runtime provi-
sions need be made for that eventuality. Standard practice in non-real-time systems is to
presume that a relatively large class of anticipated, and perhaps even some unanticipat-
ed, runtime exceptions will occur, but that they are unimportant in the sense of not justify-
ing significant resources to deal with them (cf. the ubiquitous philosophy of optimizing
performance for the most frequent cases, A la the RISC philosophy).

SIO does not have the luxury of either of thoee standard practices. A large percentage
of the runtime exceptions are an integral part uf the application itself, and many others
are inevitable in dynamic, nondeterministic systems. The OS must be designed to antici-
pate runtime exceptions yet handle them in a manner which supports the writing of mean-
ingful real-time programs.

One of the most significant kinds of exception in SIO is that it is not only possible, but
common, for resource demand to exceed supply; in particular, not all periodic and aperiod-
ic time constraints can always be met. In such cases, application-specific recourse must
be taken, and Alpha exploits the task time-value functions to do this. Alpha's default pol-
icy is to gracefully degrade service such that as many as possible of the most important
task time constraints are met. Alternative policies could include minimizing the number of
missed time constraints, or minimizing the average lateness, or amortizing tardiness
across all tasks according to importance.

The performance of any system should be optimized for the most important cases; in
SIO, these are often high stress exceptions such as emergencies due to attack or failure,
rather than the most frequent (normal, uneventful) cases (as Jensen pointed out in [DRC
86]). Alpha is specifically designed and implemented to exhibit its best performance in
critical exception cases. This requires careful reconsideration of programming practices
usually taken for granted as valuable. For instance, hints and caches accelerate average
performance, and can be counterproductive in real-time if recovery from a wrong hint or
cache miss causes unacceptable delay at a critical time. Similarly, one may need to move
code into loops to expedite exits, and to make remote procedure calls heavier weight in
order to facilitate aborts. This approach also suggests the need for related advances in
supporting tool technology, such as compiler optimization strategies which accomodate
application-specified time- and context-dependent criticality paths (analogous to trace
scheduling).

Final Technical Report

A-8 Alpha Overview

2.2.3 Determinism

It is now understood that a system does not have to be perfect to behave perfectly (the
basis of fault tolerance). Likewise, it should be understood that a system does not have
to be deterministic to behave deterministically. An OS for SIO should behave as predict-
ably as the application actually requires, and is willing to pay for in various ways (such
as adaptability and resource supply); but it should not hesitate to employ stochastic
means to achieve those ends most cost-effectively-the probability of a long distance
telephone call successfully being to its intended destination is very high largely because
of, not despite, dynamic routing in the long distance switching network (and likewise in
wide area data communication networks--e.g., [McQuillan 80]). In Alpha, this perspec-
tive is manifest most conspicuously in its embrace of aperiodic-based resource manage-
ment (e.g., scheduling) techniques. Because traditional real-time OS's are ^%.--d on
low level sampled data subsystems in which periodic tasks are dominant in both number
and importance, they can afford the "Procrustean bed" approach to accommodating aperi-
odic tasks with polling and periodic servers [Lehoczky 87]. But in SIO, time- and mis-
sion-critical aperiodic tasks prevail, calling for new resource management principles and
techniques. The Alpha project is developing and sponsoring work in this direction, and is
taking advantage of related efforts from elsewhere as they develop.

2.2.4 Guarantees

Even in the constrained environment of low level sampled data subsystems, guaran-
tees must be qualified. One sometimes reads of "conditional guarantees" [Biyabani 881,
and it is evident that many application users find this oxymoron to be misleading. In the
SIO context, the system's exceptional and stochastic behavior implies that guarantees
are not only impossible in general, they are conceptually the wrong idea-honoring them
would prevent the system from responding to subsequent, more critical needs (in low lev-
el, static systems, it is intended that no such subsequent needs could arise). Instead, Al-
pha performs resource management on a "best effort" basis.

2.2.5 Summary of Real-Time in Alpha

In Alpha, all resources-both logical (e.g., tasks, semaphores, locks, transactions) and
physical (e.g., processor cycles, memory pages, i/o bandwidth) are managed directly ac-
cording to application-specified actual task completion time constraints. Alpha includes
aperiodic-based policies which schedule both periodic and aperiodic activities in an inte-
grated, uniform manner, and accomodate dynamic variability and evolution of the time con-
straints; Alpha also includes a variety of conventional periodic-based policies such as
rate-monotonic ones if desired. Alpha supports resource management based on time-
value functions, which distinguishes between urgency and importance, and allows not
only hard deadlines but also a wide variety of soft (i.e., residual value) completion time
constraints. Time-value functions facilitate best effort resource management policies as
well as traditional approximations to gurantees. Alpha handles run-time overloads
gracefully according to application-specified policies---e.g., meeting as manay as possible
of the most important time constraints. It optimizes system performance for the most im-
portant cases-often high stress exceptions such as emergencies due to attack or fail-
ure-not simply for the most frequent (i.e., normal) cases.

Alpha supports the clean-up of computations which fail to satisfy their time constraints,

Final Technical Report

Alpha Overview A-9

to avoid wasting resources and executing improperly timed actions. It employs the same
block-structured, nested, atomic commit/abort mechanisms for time constraints as it does
for transactions.

2.3 Distribution
Distribution is a more difficult issue in mission-oriented real-time systems.

2.3.1 Distributed Operating Systems

In many environments, particularly SIO, the computing system consists of multiple phys-
ically dispersed nodes dedicated to performing one distributed application [Franta 81].
For some of these, the loose confederation of systems provided by a conventional com-
puter network is adequate; for others, it is desirable that the network be augmented to
present the users at all nodes with a single-system image--e.g., so they do not need to
know at which node a shared resource is located. But many applications, particularly in
SIO, require more than simply the appearance of a single system-the physically dis-
persed nodes must be actually integrated into a single system, analogous to a multipro-
cessor or parallel processor. The kind of distributed OS differs significantly for these three
cases.

A conventional distributed (nee network) operating system [Thomas 78] is simply a
centralized local OS with additional standardized interfaces and protocols intended for cer-
tain forms of resource _-haring among separate applications executing in a network of au-
tonomous nodes-shared file access, remote procedure calls to servers. Usually the shar-
ing is not uniform and transparent to the applications-i.e., the users access remote re-
sources in ways much different from how they access local ones. These interfaces and
protocols are typically implemented as utilities at the higher layers of the os, which mini-
mizes impact of distribution on local OS's, but also limits DOS support for distributed appli-
cations. This is illustrated in Figure 4.

Eto pplication Application

SUtilities Utilities ,Utilities

Netork ONoe 0H NtodeO

Figure 4. Conventional Distributed Operating System

Final Technical Report

A-1O Alpha Overview

2.3.2 Distributed Applications

It is often necessary (as in SIO environments) or desirable that an application be dis-
tributed across multiple nodes. A distributed application is far more integrated than indi-
vidual applications which share resources or even interact. It is conceptually a singular
entity created with a coherent, consistent perspective and set of objectives, not separate
entities which each have their own independent objectives without concern for, or even
awareness of, those of others. Its constituent computations may extend across physical
node boundaries for a variety of reasons, rather than each being confined to its owa local
address space and the resources on one node. The concurrently executing computations
inside an application exhibit more cooperative behavior than those among applications.

2.3.3 Distributed Resource Management

Distributed computations consist of constituent activities (program segments) which
exist in an environment of. asynchronous, real concurrency of execution; variable, un-
known communication delays; and multiple independent node and communication path
failure modes. Despite these complexities, it must be possible to coordinate the actions
of any number of concurrent activities so that they will have predictable, understandable
behavior-i.e., they must explicitly maintain consistency of replicated and partitioned da-
ta, and correctness of distributed execution [Jensen 76a]. However, a conventional DOS
manages most resources locally per node, and only a few (e.g., for inter-node communica-
tion) globally across the whole system. So almost all the distributed resource manage-
ment for distributed applications must be provided by the users at very high recurring de-
velopment costs and very high recurring performance penalties-see Figure 5.

Application-Provided

Distributed Resource Man aement/W/////Z//6W 7 % /7////////,////////////o

..ii ! ...X

i etork 1 Network Ntork

UtilisUtilities Uies

Noe S Node OS Nde 0~

Figure 5. Distributed Application on a Conventional DOS

Final Technical Report

Alpha Overview A-li

Distributed resource management should be the responsibility of the system so that
the users can devote their efforts to the intrinsic issues of logicai structure and algo-
rithms for &,eir applications (see Figure 6); we have used the term "decentralized" for
such an OS [Jensen SIb]. Alpha is the first instance we are aware of which qualifies as a
decentralized OS.

Figure 6. "Decentralized" Operating System

2.4 Survivability
An OS for SIO may have to tolerate conditions far more severe than those encoun-

tered in non-real-time contexts. Some (i.e., DoD) systems are subject to overt hostile
attack, and so hardware faults tend to be clustered in space and time. Attaining a multi-
purpose OS is complicated by the fact that various SIO applications may have a wide va-
riety of mission periods for which there is no single robustness approach, from hours
(fighter aircraft) to decades (satellites, industrial plants). Limited or no repairs are possi-
ble during the mission. The system usually has to remain in non-stop service during re-
covery from faults, and there are extreme safety concerns-system failure may jeopar-
dize the mission, human life, and property.

Alpha has four major survivability properties: graceful degradation, fault containment,
consistency of data and correctness of actions, and high availability of services and data.
Each of these properties is supported by specific kernel-level mechanisms. Graceful deg-
radation is provided by best-effort resource management policies and dynamic reconfigu-
ration of objects. Fault containment results from data encapsulation (objects), having ob-
ject instances in private address spaces, and capabilities (protected names). Consisten-
cy of data and ccjrrectness of actions are achieved with concurrency control objects,
resource tracking, thread maintenance, block-structured exception handling, and real-
time transaction mechanisms. High availability of services and data derives from object
replication and dynamic reconfiguration of objects.

Alpha presents its survivability features through the kernel programming model as a
set of mechanisms which can be selected and combined as desired-their cost is propor-
tional to their power. The resulting spectrum of survivability includes:

Final Technical Report

A-12 Alpha Overview

* none
* synchronization operation tracking-prevents deadlock for critical resources
• synchronization operation tracking and exception handlers-allows each individ-

ual object instance to satisfy its own consistency constraints
* replication based on synchronization operation tracking and exception han-

dlers-permits an object to survive node failures with nearly up-to-date infor-
mation
transactions--scheduled to satisfy application-wide consistency constraints
and to simplify the number of failure modes; transaction services and costs may
be tailored to suit the needs of the client

replication based on transactions-permits an object to survive node failures
with up-to-date information.

2.5 Adaptability
We consider adaptability to encompass flexibility to accommodate operational varia-

tions and modifications at both execution time and configuration time, and evolvability in
size (e.g., number of nodes), performance, functionality, and technology. Both of these as-
pects have special implications on operating systems for SIO.

This environment now demands greater computer system flexibility than has histori-
cally been available. Many applications, such as SIO, are becoming so sophisticated that
the static approach is clearly infeasible. Also, computer hardware technology advances
have diminished the size, weight, and power consumption per unit of performance and the
percentage of system costs represented by computer hardware assets, and have in-
creased the cost incentives for standardization and re-usability.

Evolvability presents special challenges in real-time SIO environments because the
computing requirements are ill-defined initially and continue to evolve-not just across
the design phase, but even across the entire lifetime of the system, and that lifetime can
be expected to be decades [Boehm 81].

One of Alpha's most effective forms of support for adaptability is its strict adherence
to the philosophy of policy/mechanism separation. It has a kernel of primitive mechanisms
from which everything else is constructed according to a wide possible range of applica-
tion-specific policies to meet particular functionality, performance, and cost objectives.
This is essentially the dual of the more widely used principle of information hiding.

Alpha's kernel mechanisms are intended to provide the lowest meaningful (not sim-
ply the lowest possible) level of functionality for an application-i.e., anything omitted
would have to be done by each of the applications, which would result in recurring, incon-
sistent, inefficient efforts, and thus a much less cost-effective system; anything added
would limit policy flexibility and thus system cost/performance tradeoffs. Policy modules
written at Alpha's system and user layers may employ the kernel level mechanisms es
sentially without restrictions--they are "sharp tools."

Prominent examples of Alpha's policy/mechanism separation include: resource sched-
uling mechanisms that suppon best-effort, shortt st processing time first, deadline, first-
come first-served, or any other policies; and transaction mechanisms (atomicity, concur-

Final Technical Report

Alpha Overvtew A-13

rency control, permanence) that support application-specific transaction policies.

2.6 Programming Model
Alpha's kernel provides a new programming model in support of the technical require-

ments and approaches discussed above [Northcutt 88b]. The goals for this programming
model were that it: explicitly support the timeliness, distribution, survivability, and adapt-
ability objectives needed for SIO; remove the semantic gap between the application's
natural abstractions and their more usual system manifestation; be similar in concept and
implementation to traditional programming models; eliminate unnecessary scheduler in-
teractions between steps of a computation; not put i priori limits on execution concurren-
cy; be oriented towards loosely-coupled architectures (with either uniprocessor or multi-
processor nodes); and not require specialized hardware support for efficient implementa-
tion of the basic abstractions.

The principle abstractions of this programming model are:
* objects (passive abstract data types--code plus data), in which there may be

any number of concurrent control points

" operation invocation (similar to procedure calling)
" threads (loci of control point execution) which extend through objects via opera-

tion invocation.

In addition, Alpha provides real-time distributed data management mechanisms fully
integrated into its kernel to achieve the necessary application-specific consistency of rep-
licated and partitioned data, and correcmess of distributed execution.

2.6.1 Objects

Alpha's objects are the relatively conventional abstract data type style [Cox 86].
Each instance of an Alpha client-level object has a private address space. The kernel
considers the universe of objects to be flat; additional structure is supplied as required at
the system and user levels. An instance of an Alpha object exists entirely or a single
node. Instances can be dynamically migrated among nodes; initial instance placement is
specified by the user. Objects may be replicated transparently, using application-chosen
policies. Alpha objects are intended to normally be of moderate size-e.g., 100 to 10,000
lines of code-and number. Everything, including devices and files, appears as objects to
the programer. Alpha's objects are illustrated with a track file object in Figure 7.

Any object may be declared permanent, in the sense that a non-volatile representa-
tion of the object's state resides in the object store. Any object may support atomic
transaction-controlled updates to its permanent representation, thus providing for consis-
tent, failure-atomic typed data storage. The object store is capable of supporting directo-
ry objects to map logical names into object capabilities (which are, themselves, system-
provided logical names, and are used exclusively, even within the kernel, except within
the object store implementation itself). Should a particular file interface be rcquired, it is
possible to create a permanent object class whose interface provides the required file se-
mantics (e.g., operations such as open, close, read, write).

2.6.2 Operation Invocation

Invocation of an operation on an object is the vehicle for all interactions in the system,

Final Technical Report

A-14 Alpha Overview

Track Database

CreateTrack C
Track

DeleteTrack Code

GetTrackInfo C d Track

UpdateTracklnfo Code

FindBestFit de

Figure 7. Example Alpha Object

including OS calls. Invocation has synchronous request/reply semantics (similar to re-
mote procedure call [Nelson 81]), but without the nested monitor type limitations often
associated with synchronous communications in process/message based systems
[Liskov 85b]---operations are block structared.

Invocation masks the effects of physical distribution. Remote objects and object mi-
gration provide location transparency. Communication errors are handled by underlying
reliable message protocols. Orphan detection and elimination mask node failures.

Invocations may fail for various reasons---e.g., protection violation, bad parameter,
node failure, machine exception, time constraint expiration, transaction abort. The kernel
provides mechanisms for one block-structured exception handling construct for all these
cases; it allows the object programmer to designate application-specific handlers for each
type of operation failure, on (if desired) a per-invocation basis.

2.6.3 Threads
An Alpha thread is a distributed computation (not a lightweight task as in Mach

[Accetta 86]) which spans both objects and (transparently and reliably) physical nodes,
carrying its local state and attributes for timeliness, robustness, etc., as shown in Figure
8. These attributes are used by Alpha at each node to perform resource management on a
system-wide basis in the best interests (i.e., to meet the time constraints) of the whole
distributed application. The combination of objects and threads is illustrated in Figure 9.

2.6.4 Real-Time Transaction Mechanisms
To achieve the necessary consistency of replicated and partitioned data, correctness

of distributed execution, and real-time performance, Alpha's kernel provides transaction
mechanisms for failure atomicity, application-specific concurrency control, and perma-
nence. Any combination of these mechanisms may be used, so the particular reliability re-
quirements of an application at a given time can be met for a proportional cost (e.g., exe-
cution overhead). This is in contrast to the usual practice of forcing the user to always
pay for an entire, heavy-weight transaction facility which he may not require or be able to

Final Technical Report

Alpha Overview A-15

ThreadA Object, Object 2 Object3

Object1 Object2 Object3 Object 2

ThreadA

time

Figure 8. An Alpha Thread and its Attributes

afford. Transactions may be nested, for improved modularity [Moss 85]. These mecha-
nism- are supplied at the kernel level for use not only by the application but also by Al-
pha, which is itself a set of distributed programs.

Alpha's transactions differ significantly from traditional technology by being real-time
(Jensen 76a, Abbott 88a, Abbott 88b], which in Alpha basically means that they are
scheduled according to the same time-value functions as all other resources at resource
request times, and at deadlock resolution times [Clark 89].

Alpha allows not just serializable transactions [Papadimitriou 77], but also non-serial-
izable ones, exploiting various types of knowledge beyond the transaction syntax: the se-
mantics among transactions (e.g., [Allchin 82, Garcia-Molina 83, Liskov 85a]); or the da-
ta consistency constraints -Sha 88]. Some forms of non-serializable transactions have
advantageous real-time properties with respect to scheduling abort processing-since
they commit and allow other transactions to observe their results with no ill effect for any

Final Technical Report

A-16 Alpha Overview

eaponControl TrackDB

... ControlWpn GetTrackInfo

T Constraint I
I Compute

Guidance

CommInterface

Transmit

Figure 9. Example of Alpha's Object/Thread Programming Model

arbitrary period of time [Sha 83], their abort processing can also be deferred for an arbi-
trary period of time (unless there are other mitigating circumstances).

In addition to systcm-supplied commit and abort handlers for transactions, time con-
straints, etc., Alpha allows user-supplied handlers customized for application-specific
notions of correctness or for improved performance.

2.5.5 Comparison With Other Models
The most common OS programming models are based on the process/message and cli-

ent/server abstractions.

A process is equivalent to an object and a "captive" thread in Alpha. Processes do not
necessarily have well-defined interfaces-they can have entry points at arbitrary places
in the code. Many process/message systems do not make use of the generality of asyn-

Final Technical Report

Alpha Overiew A-17

chronous message passing-they build restricted interfaces on top (cf. Matchmaker
[Jones 84]). Processes require scheduler interaction and full context swap for each com-
putational step. Process/message systems frequently introduce structure internal to pro-
cesses (e.g., "light-weight" processes)-this can be considered a loss of correspon-
dence between user and system abstractions. Typically, the distinction between local and
remote processes is made explicit-the client must manage logical identifier/location
mapping.

The client/server model does not maintain full correspondence between abstraction and
implementation of computations. Server processes often execute with their own at-
tributes, independent of the attributes of the client on whose behalf the service is being
performed (although a number of OS's do deal with this problem--cf. "regions" in iRMX
[Intel 781, recently reincarnated as "priority inheritance" in [Sha 87]). The communica-
tions and scheduling subsystems (and the interaction between them) dictate the behav-
ior of the system, not the attributes of the computations. Using a single server process to
service multiple concurrent requests fails to exploit potential concurrency. Properties of
server processes, such as distribution and replication, frequently are not transparent to
clients.

Modifications can be made to the process/message and client/server models to better
approximate the characteristics of Alpha's thread/object model, however such attempts
can be expected to incur substantial costs.

Final Technical Report

A-18 Alpha Overview

3 System Structure
Figure 10 illustrates the overall structure of the Alpha OS [Northcutt 88f, Northcutt

88g, Northcutt 88h, Jensen 88a, Reynolds 88a, Reynolds 88b]. The mechanisms dis-
cussed herein for real-time, distribution, survivability, and adaptability reside in Alpha's
kernel. The system layer includes the policies, both system-provided and application-
specific. Alpha's user layer is more typical of conventional os's in the sense that it con-
tains the command interpreter, utilities and libraries, and application software.

Releases 2 and beyond of Alpha will co-exist with Concurrent's RTU® [Henize 86] real-
time UNIX on each or any node, for software development and access to utilities (such as
TCP/IP) whose added value do not warrant their inclusion in Alpha's early releases; it al-
so allows interoperability with BBN's CRONUS wide-area DOS [Schantz 88], which runs
on RTU.

*C man Alpha @Applications 0
User 'UtilitiesInter:reter Layer Libraries I nterconnect

Alpl-_, RTU
:Paging Servers System Initialization
Scheduling Servers System .Reconfiguration SystemLayer Layer

Abstractions Facifltes
a :Objects lha 'Time Management

*ThreadsComnctn T
'Capabilities Kernel :ComunUcaon
-Invocation Laye 'Virtual Memory Kernel'Snhonzto 'Layer Secondary Storageiiiii:-::::::::..i ,SYnc hrOniza t ion iiiiiiiiiiii;ii.D v esg :::

........ 'D evices
'Trasactons SchedulingAlpha 'Exceptions

" '" t B O C E S O R S

Interconect :~~ter.........................

'Debug/Monitor Mesae

Figure 10. Alpha Releases 2 and 3 Structure

The hardware configuration of the testbed for Alpha Release I at CMU and General Dy-

Final Technical Report

Alpha Overview A-19

namics can be seen in Figure 11 [Northcutt 88d]. Each multiprocessor node was con-
structed from modified Sun Microsystems and other Multibus boards.

Develo~ment and Control System

......

Distributed Computer System

..................

ADDlication System

Figure 11. Alpha OS Prototype (Release 1) Testbed

Final Technical Report

A-20 Alpha Overview

4 Status and Future Plans
The Alpha prototype (now called Release 1) provided validation of its philosophy and

basic concepts. However, it was prototype quality, unsupported code on custom-modified
and unsupported hardware. Concurrent Computer Corporation is now performing an all-
new, next-generation version of Alpha which will respond to lessons learned from Re-
lease 1, extend the functionality beyond what the prototype effort had time and resources
to provide, and exploit the knowledge of many new contributors. This Alpha will be com-
mercial-quality code, embodied in a phased sequence of increasing functionality releases;
major releases 2 and 3 are scheduled for early 1990 and 1991, respectively. This Alpha
OS is also portable-its initial hardware platform is a MIPS-based multiprocessor prod-
uct, and these are then interconnected with FDDI and/or Ethemet-see Figure 12. Alpha
OS Releases 2+ and their initial testbed will be installed and supported by Concurrent at
a number of Government and industry (both DoD contractor and civilian) facilities, where
it will be experimentally evaluated in actual SIO application contexts.

1 0

File Server
and

Gateway Alpha Nodes

External
Connection Seia

SLines

-- -
Alpha Interconnect (Ethemet/FDDI)

Figure 12. Alpha OS Release 2+ Initial Testbed

Final Technical Report

Alpha Overview A-21

Alpha Release 1 was implemented in C; Releases 2 and 3 are being implemented in
(AT&T Version 2) C++, and initially will provide runtime library support for C and C++
application software [Shipman 88]. Ada support is being planned for Releases 2 and be-
yond, and an Ada implementation of the OS is being contemplated.

A number of DoD prime contractors are actively engaged with Concurrent in planning
for transition and experimental evaluation of Alpha in applications such as: ground-based
battle management, C3I, and air defense; surface ships; and mission management avion-
ics.

Alpha is non-proprietary and in the public domain for U.S. Government uses; both bina-
ry and source licenses will be available for commercial purposes on other vendors' hard-
ware platforms.

Alpha enjoys major corporate commitment from Concurrent Computer Corp., both as the
basis for a future OS product specifically for the emerging military/aerospace and commer-
cial SIO markets, and as the source of technology for a new generation of real-time UNIX
which will be different in kind from commodity UNIX.

Final Technical Report

A-22 Alpha Overview

5 Acknowledgments
Research on Alpha and its technology, taking place at CMU, Concurrent, and else-

where, is sponsored in part by the U.S.A.F. Rome Air Development Center, additional
support at CMU was provided by the U.S. Naval Ocean Systems Center, and the General
Dynamics, IBM, and Sun Microsystems corporations.

The authors are grateful for the contributions to Alpha's design and development by Jim
Hanko, Don Lindsay, Martin McKendry, Jack Test, Jeff Trull, and Huay-Yong Wang.

UNIX is a registered trademark of the AT&T Corp. RTU is a registered trademark of
Concurrent Computer Corp.

Final Technical Report

Alpha Overview A-23

6 References
[Abbott 88a] Abbott, R. and Garcia-Molina, H.

Scheduling Real-Time Transactions
ACM SIGMOD Record, March, 1988

[Abbott 88b] Abbott, R. and Garcia-Molina, H.
Scheduling Real-Time Transactions: A Performance Evaluation
Proceedings of the 14th VLDB Conference, ACM, ?, 1988.

[Accetta 86] Accetta, M. J., Baron, R. X., Golub, D. B., Rashid, R. F., Tevanian,
A. and Young, M. W.
Mach: A New Kernel Foundation for UNIX Development.
Proceedings of the Summer 1986 USENIX Technical Conference

and Exhibition, June, 1986.

[Allchin 82] Allchin, J.E., and McKendry, M.S.
Object Based Synchronization and Recovery
Technical Report GIT-ICS-82/15, School of Information and Com-

puter Science, Georgia Institute of Technology, 1982.

[Boehm 81] Boehm, B.W.
Advances in Computer Science and Technology: Software Engineer-

ing Economics
Pretice Hall, 1981

[Biyabani 88] Biyabani, S., Stankovic, J.A., and Ramamritham, K.
The Integration of Deadlines and Criticalness Requirements in

Hard Real-Time Systems
IEEE and USENIX Fifth Workshop on Real-Time Software and

Operating Systems, May, 1988.

[Boebert 78] Boebert, W. E.
Concepts and Facilities of the HXDP Executive.
Technical Report 78SRC21, Honeywell Systems & Research Cen-

ter, March, 1978.

[Clark 881 Clark, R. K., Kegley, R. B., Keleher, P. J., Maynard, D. P., North-
cutt, J. D., Shipman, S. E. and Zimmerman, B. A.
An Example Real-Time Battle Management/Command and Control

Application on Alpha.
Archons Project Technical Report #88032, Department of Computer

Science, Carnegie-Mellon University, March, 1988.

[Clark 89] Clark, R.C.
Scheduling Dependent Real-Time Activities
Ph.D. Thesis, Computer Science Department, Carnegie-Mellon Uni-

versity, To Appear.

[Cox 86] Cox, B.J.
Object-Oriented Programming

Final Technical Report

A-24 Alpha Overview

Addison-Wesley, 1986.

[DRC 86] Dynamics Research Corporation
Distributed Systems Technology Assessment for SDI
Technical Report E-12256U, Electronic Systems Division, USAF

Systems Command, September 1986.

[Franta 81] Franta, W.R., Jensen, E.D., Kain, R.Y., and Marshall, G.D.
Real-Time Distributed Computers
Advances in Computers, Vol. 20, Academic Press, 1981.

[Garcia-Molina 83] Garcia-Molina, H.
Using Semantic Knowledge for Transaction Processing in a Distrib-

uted Database
ACM Transactions on Database Systems, June, 1983.

[Henize 86] Henize, J.A.
Understanding Real-Time UNIX
MASSCOMP Technical Report, January, 1986.

[Intel 78] Intel Corp.
iRMX86 Nucleus Users Guide
Intel Corporation, 1978

[Jensen 76a] Jensen, E. D.
The Implications of Physical Dispersal on Operating Systems.
Workshop on Distributed Processing, Brown University, Provi-

dence, RI, August, 1976.

[Jensen 76b] Jensen, E. D. and Anderson, G. A.
Feasibility Demonstration of Distributed Processing for Small

Ships Command and Control Systems.
Final Report N00123-74-C-0891, Honeywell Systems & Research

Center, August, 1976.

[Jensen 79] Jensen, E. D.
Distributed Computer Systems
Computer Science Research Review, Department of Computer Sci-

ence, Carnegie-Mellon University, September, 1979.

[Jensen 81a] Jensen, E.D.
HardwareSoftware Relationships in Distributed Computer Systems
Distributed Systems-Architecture and Implementation: An Ad-

vanced Course, Springer-Verlag, 1981.

[Jensen 81b] Jensen, E.D.
Decentralized Control
Distributed Systems-Architecture and Implementation: An Ad-

vanced Course, Springer-Verlag, 1981.

[Jensen 84] Jensen, E. D., and Pleszkoch, N.
ArchOS: A Physically Dispersed Operating System-An Overview of

Final Technical Report

Alpha Overview A-25

its Objectives and Approach
IEEE Distributed Processing Technical Committee Newsletter,

Special Issue on Distributed Operating Systems, June, 1984.

[Jensen 85] Jensen, E.D., Locke, C.D., and Tokuda, H.
A Time-Driven Scheduling Model for Real-Time Operating Systems
Proc. IEEE Real-Time Systems Symposium, December, 1985.

[Jensen 88a] Jensen, E.D., Test, J.A., Reynolds, F.D., Burke, E., Hanko, J.G.
Alpha Release 2 Design Summary Report.
Technical Report #88091, Kendall Square Research Corporation,

September 1988.

[Jensen 88b] Jensen, E. D.
Alpha: A Real-Time Decentralized Operating System for Mission-

Oriented System Integration and Operation
Proc. Symposium on Computing Environments for Large, Complex

Systems, Univ. of Houston Research Institute for Computer and
Information Sciences, November 1988.

[Jensen 88c] Jensen, E. D., Northcutt, J. D., Clark, R. K., Shipman, S. E., May-
nard, D. P. and Lindsay, D.C.
The Alpha Operating System: An Overview.
Archons Project Technical Report #88121, Department of Computer

Science, Carnegie-Mellon University, December, 1988.

[Jones 84] Jones, M. B., Rashid, R. F., and Thompson, M. R.
Matchmaker: An Interface Specification Language for Distributed

Processing.
Technical Report CMU-CS-84-161, Department of Computer Sci-

ence, Carnegie-Mellon University, 1984.

[Lehoczky 87] Lehoczky, J.L., Sha. L., and Strosnider, J.K.
Enhanced Aperiodic Responsiveness in Hard-Real-Time Environ-

ments
Proc. IEEE Real-Time Systems Symposium, 1987.

[Lin 87] Lin, K. i., Natarajan, S., and Liu, J.W.S.
Imprecise Results: Using Partial Computations in Real-Time Sys-

tems
Proc. IMEE 8th Real-Time Systems Symposium, December 1987.

[Liskov 85a] Liskov, B. and Weihl, W.
Specification of Distributed Programs
Technical Report, MIT, September, 1985.

[Liskov 85b] Liskov, B. H., Herlihy, M. P. and Gilbert, L.
Limitations of Synchronous Communication with Static Process

Structure in Languages fo," Distributed Computing.
Technical Report CMU-CS-85-168, Department of Computer Sci-

ence, Carnegie-Mellon University, October, 1985.

Final Technical Report

A-26 Alpha Overview

[Liu 73] Liu, C.L. and Layland, J. W.
Scheduling Algorithms for Multiprogramming in a Hard Real-Time

Environment
Journal of the ACM, 20(1), 1973.

[Locke 86] Locke, C.D.
Best-Effort Decision Making for Real-Time Scheduling
Ph.D. thesis, Department of Computer Science, Carnegie-Mellon

University, 1986.

[McQuillan 80] McQuillan, J.M., Richer, I., and Rosen, E.C.
The New Routing Algorithm for the ARPANET
IEEE Transactions on Communications, May, 1980

[Moss 85] Moss, J.E.B
Nested Transactions: An Approach to Reliable Distributed Comput-

ing
MIT Press, 1985.

[Nelson 81] Nelson, B. J.
Remote Procedure Call.
Ph.D. Thesis. Department of Computer Science, Carnegie-Mellon

University, May, 1981.

[Northcutt 87] Northcutt, J. D.
Mechanisms for Reliable Distributed Real-Time Operating Sys-

ters: The Alpha Kernel.
Academic Press, Boston, 1987.

[Northcutt 88a] Northcutt, J. D.
The Alpha Operating System: Requirements and Rationale
Archons Project Technical Report #88011, Department of Computer

Science, Carnegie-Mellon University, January, 1988.

[Northcutt 88b] Northcutt, J. D. and Clark, R. K.
The Alpha Operating System: Programming Model.
Archons Project Technical Report #88021, Department of Computer

Science, Carnegie-Mellon University, February, 1988.

[Northcutt 88c] Northcutt, J. D., Clark, R. K., Shipman, S. E., Maynard, D. P., Lind-
say, D. C., Jensen, E. D., Smith, J. M., Kegley, R. B., Keleher and
Zimmerman, B. A.
Alpha Preview: A Briefing and Technology Demonstration for DoD.
Archons Project Technical Report #88031, Department of Computer

Science, Carnegie-Mellon University, March, 1988.

[Northcutt 88d] Northcutt, J. D.
The Alpha Distributed Computer System Testbed.
Archons Project Technical Report #88033, Department of Computer

Science, Carnegie-Mellon University, March, 1988.

Final Technical Report

Alpha Overview A-27

[Northcutt 88e] Northcutt, J. D. and Shipman, S. E.
The Alpha Operating System: Programming Utilities.
Archons Project Technical Report #88041, Department of Computer

Science, Carnegie-Mellon University, April, 1988.

[Northcutt 88f] Northcutt, J. D., Clark, R. K., Shipman, S. E. and Lindsay, D. C.
The Alpha Operating System: System/Subsystem Specification.
Archons Project Technical Report #88051, Department of Computer

Science, Carnegie-Mellon University, May, 1988.

[Northcutt 88g] Northcutt, J. D.
The Alpha Operating System: Kernel Programmer's Interface Manu-

al.
Archons Project Technical Report #88061, Department of Computer

Science, Carnegie-Mellon University, June, 1988.

[Northcutt 88h] Northcutt, J. D. and Shipman, S. E.
The Alpha Operating System: Program Maintenance Manual.
Archons Project Technical Report #88071, Department of C. muter

Science, Carnegie-Mellon University, July, 1988.

[Papadimitriou 77] Papadimitridriou, C.H., Bernstein, P.H., and Rothnie, J.B.
Some Computational Problems Related to Database Concurrency

Control
Proc. Conference on Theoretical Computer Science, August, 1977.

[Peng 87] Peng, D. and Shin, K.G.
Modeling of Concurrent Task Execution in a Distributed System for

Real-Time Control
IEEE Transactions on Computers, April, 1987.

[Ready 86] Ready, J.F.
VRTX: A Real-Time Operating System for Embedded Microproces-

sor Applications
IEEE Micro, August, 1986.

[Reynolds 88a] Reynolds, F.D., Hanko, J.G., Test, J.A., Burke, E., Jensen, E.D.
Alpha Release 2 Kernel Interface Specification
Technical Report #88121, Concurrent Computer Corporation, De-

cember 1988.

[Reynolds 88b] Reynolds, F.D., Hanko, J.G., Jensen, E.D.
Alpha Release 2 Preliminary System/Subsystem Description
Technical Report #88122, Concurrent Computer Corporation, De-

cember 1988.

[Schantz 88] Schantz, R.E. and Thomas, R.H.
Cronus, A Distributed Operating System: Functional Definition

and System Concept
Technical Report RADC-TR-88-80, Rome Air Development Cen-

Final Technical Report

A-28 A!pha Overview

ter, 1988.

[Sha 83] Sha, L., Jensen, E.D., Rashid, R.F., and Northcutt, J.D.
Distributed Co-Operating Processes and Transactions
Synchronization, Control, and Communication in Distributed Com-

puting Systems, Academic Press, 1983.

[Sha 87] Sha, L., Rajkumar, R., Lehoczky, J.P.
Priority Inheritance Protocols: An Approach to Real-Time Synchro-

nization
Technical Report CMU-CS-87-181, Department of Computer Sci-

ence, Carnegie-Mellon University, 1987.

[Sha 88] Sha, L., Lehoczky, J.P., and Jensen, E.D.
Modular Concurrency Control and Failure Recovery
IEEE Transactions on Computers, 1988.

[Shipman 88] Shipman, S. E.
The Alpha Operating System: Programming Language Support.
Archons Project Technical Report #88042, Departmeait of Computer

Science, Carnegie-Mellon University, October, 1988.

[Stankovic 87] Stankovic, J.A. and Sha, L.
The Principle of Segmentation for Hard Real-Time Systems
Technical Report, 1987

[Stankovic 88] Stankovic, J.A., and Ramamritham, K.
Hard Real-Time Systems
IEEE Computer Society Tutorial, 1988.

[Stewart 77] Stewart, B.
Distributed Data Processing Technology, Interim Report to the U.S.

Army Ballistic Missile Defense Advanced Technology Center
Honeywell Systems and Research Center, March, 1977.

[Thomas 78] Thomas, R.H., Schantz, R.E., and Forsdick, H.C.
Network Operating Systems
Technical Report 3796, Bolt, Beranek and Newman, 1978.

[Trull 88] Trull, J. E., Northcutt, J. D., Clark, R. K., Shipman, S. E. and Lind-
say, D. C.
An Evaluation of the Alpha Real-Time Scheduling Policies.
Archons Project Technical Report #88102, Department of Computer

Science, Carnegie-Mellon University, October, 1988.

Final Technical Report

Alpha Requirements and Rationale B-i

Table of Contents

A bstract B 1
1 Introduction B-4

2 Application Domain B-6
2.1 Distributed Systems .. B-6
2.2 Real-Time Command and Control .. B-8

3 Special Requirem ents .. B-11
3.1 Timeliness ... B-11

3.1.1 Standard Requirements .. B-11
3.1.2 Time-Driven Resource M anagement ... B-12
3.1.3 Common Misconceptions .. B-13

3.1.3.1 Priority-Based Processor Scheduling B-13
3.1.3.2 Deterministic Systems ... B-14
3.1.3.3 Excess Assets ... B-16

3.2 Distribution ... B-16
3.3 Robustness .. B-17

3.3.1 Implications of Distributed Real-Time Control B-17
3.3.2 M ajor Robustness Concepts ... B-18

3.3.2.1 Correctness of Data and Actions .. B-18
3.3.2.2 Availability of Services and Data .. B-18
3.3.2.3 Graceful Degradation of Function ... B-19
3.3.2.4 Fault Containment .. B-19

3.3.3 Optimizing for Exception Cases .. B-20
3.4 Adaptability .. B-20

4 Current Practice ... B-22
4.1 Timeliness ... B-22

4.1.1 Minimalist Systems .. B-22
4.1.2 Priority-Based Scheduling ... B-23
4.1.3 Low Utilization .. B-24

4.2 Distribution ... B-24
4.3 Robustness .. B-26
4.4 Adaptability .. B-27

4.4.1 Dynamic System Behavior .. B-27
4.4.2 Dynamic Time Constraints .. B-28

5 Technical Approach B-30
5.1 Basic Abstractions .. B-31

5.1.1 Objects ... B-31
5.1.2 Threads ... B-33
5.1.3 Operation Invocation ... B-35

5.2 Time-Value Functions .. B-37
5.3 Implementation Features ... B-39

Final Technical Report

B-ii Alpha Requirements and Rationale

5.3.1 System Software Structure ... B-39
5.3.2 Testbed Architecture .. B-41

6 R ationale ... B-43
6.1 Timeliness ... B-43

6.1.1 Effects on the Basic Abstractions .. B-43
6.1.1.1 The Thread/Object Approach .. B-44
6.1.1.2 Comparisons to Traditional Approaches B-44

6.1.2 Effects on the Programming Interface ... B-48
6.1.2.1 Specifying Timeliness Attributes ... B-48
6.1.2.2 Handling Expired Time Constraints B-49

6.1.3 Effects on the Kernel Subsystems ... B-51
6.1.3.1 Scheduling Subsystem ... B-52
6.1.3.2 Communications Subsystem .. B-54
6.1.3.3 Storage M anagement Subsystem ... B-54

6.1.4 Effects on the Kernel M echanism s .. B-55
6.2 Distribution ... B-56
6.3 Robustness .. B-57

6.3.1 Exception Handling ... B-58
6.3.2 Optimizing for Exceptions ... B-60

6.4 Adaptability .. B-61
6.4.1 Object-Oriented Programming .. B-61
6.4.2 Policy/M echanism Separation ... B-62

8 A cknow ledgm ents ... B-63

R eferences ... B-64

Final Technical Report

Alpha Requirements and Rationale B-iii

List of Figures

Figure I Example Decentralized System .. B-6
Figure 2 Example Distributed System .. B-7
Figure 3 Real-Time Supervisory Control Context .. B-9
Figure 4 Example Real-Time Systems Hierarchy B-10
Figure 5 Static versus Dynamic Priorities ... B-15
Figure 6 Optimizing for Exception Cases ... B-20
Figure 7 Example Object .. B-32
Figure 8 Example Thread/Object Snapshot .. B-34
Figure 9 Example of Thread Attribute Nesting .. B-35
Figure 10 Example Operation Invocation ... B-36
Figure 11 Components of a Time-Value Function ... B-38
Figure 12 Logical System Software Structure .. B-40
Figure 13 Testbed System Structure ... B-42
Figure 14 Typical Process/Message Interactions .. B-46
Figure 15 Typical Thread/Object Interactions .. B-47
Figure 16 Example Use of Time Constraint Blocks B-51

Final Technical Report

Aa Requirements and Radonale B-1

Abstract
Alpha is an adaptable decentralized operating system for real-time applications, being

developed as a part of the Archons project's on-going research into real-time distributed
systems. Alpha is a new kind of operating system, which is unique in two highly signifi-
cant ways-first, it is decentralized, providing reliable resource management transparent-
ly across physically dispersed nodes, so that distributed applications programming can be
done as though it were centralized; and second, it provides comprehensive high technolo-
gy support for real-time applications, particularly supervisory control systems (e.g.,
industrial automation) which are characterized by predominately aperiodic activities, hav-
ing critical time constraints (such as deadlines) associated with them. Alpha is extreme-
ly adaptable so as to be easily optimized for a wide range of problem-specific functionali-
ty, performance, and cost.

Alpha is oriented towards systems having on the order of 10 to 100 nodes, which are
physically dispersed on the order of 1 to 1000 meters. The Alpha operating system is for
the most demanding kind of situation: mission-oriented systems where all nodes are con-
tributing to the same application, not simply for the network case of individual users at
each node doing unrelated computations. The focus of this research is on having nodes
be logically integrated together, rather than autonomous. Alpha provides this logical inte-
gration by executing on the bare hardware and managing resources in the same sense as
a uniprocessor operating system does, not by being just a "UNIX-style" user process
and providing standard application interfaces and protocols for simple inter-node resource
sharing, as is done in conventional, computer network-style distributed operating sys-
te ns. Resources must often be managed by Alpha across node boundaries in the best
interests of the whole application, not just on the usual per-node basis. This necessi-
tates that Alpha also accept responsibility for handling asynchronous concurrency and
reliability issues which arise in distributed systems, instead of passing them all up to the
users for recurring, lower performance solutions. Alpha provides facilities which are nec-
essary and sufficient to maintain consistency of data and correctness of operation at both
the system and application levels, despite concurrent execution and node or communica-
tion path failures. This is accomplished through the use of techniques similar to those
normally found, far above the operating system, in distributed database systems---e.g.,
nested atomic transactions, replication. With Alpha, the system's constituent nodes col-
lectively form a single computer, not a computer network; thus, distributed application
software can be written as though it were for a conventional uniprocessor-without the
applications programmer even knowing about, much less having to manage, distributed
resources.

The term "real-time" is usually intended to mean "deterministic behavior" and "faster
is better," particularly in the area of interrupt handling and context swaps. Real-time
control in this sense applies only to computer systems which simply do low-level sen-
sor/actuator sampled-data loop applications, and are traditionally designed to have rigid-
ly periodic behavior. But supervisory real-time control is far more difficult because it
encompasses not just such static periodicity but also predominantly dynamic and aperiod-
ic activities which nonetheless have critical time constraints, such as deadlines. These
constraints are part of the correctness criteria of the computation, and failure to meet
them is a threat to the systems's mission and to survival of property and human life.

Final Technical Report

B.2 Alpha Requirements and Rationale

A novel approach is taken in Alpha whereby the time constraints of each of an applica-
tion's constituent activities are expressed in terms of the value to the system of complet-
ing each activity as a function of its completion time (deadlines are a simple special case
of this, that is, a unit value step function). In addition, computational activities have rela-
tive importances which are also time-dependent. These time-value functions and impor-
tances are dynamic and are used by the system in the time-driven management of sys-
tem resources. The conventional and seemingly simpler notions of "priority" in real-time
systems are poor approximations to this approach, and extensive experience has consis-
tently demonstrated that priorities introduce massive and uncontrollable complexity into
all but the most trivial real-time systems. Alpha employs this new real-time manage-
ment technique to resolve all contention for resources such as processor cycles, communi-
cation access, secondary storage, and synchronizers (e.g., semaphores and locks). Time
constraints and importance are among the attributes propagated with computations which
cross node boundaries so that resource management can be global. The ubiquitous
client/server model is unsuitable in this respect since it does not maintain such essential
correspondences between the service and client on whose behalf that service is being
provided.

Furthermore, Alpha exhibits a fundamental philosophy which is contrary to that of oper-
ating systems for other application environments. Instead of optimizing performance of
the normal cases at the expense of infrequent ones, it does the opposite. It is in the
exception cases such as emergencies (e.g., being in danger due to failure or attack) when
a real-time operating system must be depended upon to perform best, even if the sys-
tem's routine performance must be suboptimal to ensure that. This is one of the principal
reasons why the expression "real-time UNIX" is inevitably an oxymoron.

Supervisory real-time control applications are very complex, and are not (perhaps can-
not be) well understood; in addition, the environment and technology are always in a
state of flux. Thus, the functional and performance requirements for their computers
evolve continuously throughout the entire life cycle of the system (which can be
decades). Alpha accommodates this situation through a variety of techniques, many of
which are quite innovative. Its design is kernelized and strictly adheres to the principle
of policy/mechanism separation. Specific operating system policies are carefully excluded
from its kernel level mechanisms so that a wide range of different service facilities, and
indeed entire decentralized operating systems, can be effectively constructed using
Alpha's kernel, in accordance with application needs. For example, Alpha's kernel pro-
vides atomicity, serializability, and permanence of operations as orthogonal mechanisms.
Conventional atomic transaction facilities bundle all three properties together, with corre-
spondingly high overhead, as the only choice of policy regardless of need and affordabili-
ty. But the client layers of Alpha's kernel can base their policies on other combinations
of these mechanisms. For example, there are many instances in real-time systems when
problem-specific consistency constraints yield correct results more efficiently than serial-
izability would, or when permanence is not worth its cost. This same philosophy is fol-
lowed in scheduling, communications, and all other types of system resource manage-
ment.

Computers embedded in real-time control systems usually must produce the highest
possible performance from the allowable hardware size, weight, and power, including

Final Technical Report

Alpha Requirements and Ratonale B-3

memory space for the operating system. A general-purpose computer system can easily
be an order of magnitude lower in performance than a special-purpose one for a particular
application. Thus, to achieve the balance of performance and flexibility needed tor cost-
effectiveness in a multiplicity of changing real-time applications, Alpha is general-pur-
pose but unusually malleable so as to exploit all the problem-specific static and dynamic
information available from the application. In addition, application functionality can readi-
ly be migrated downward into the operating system, and even into its kernel, for
increased performance when necessary.

Alpha's internal implementation is organized so that its subsystems (such as schedul-
ing, communications, secondary storage, etc.) can all execute truly concurrently within
each node. It is intended that these separate hardware points of control within Alpha be
a mixture of dynamically assigned general-purpose processors (i.e., each node in the
decentralized computer can be a multiprocessor) and algorithmically specialized hard-
ware accelerators (co-processors and other forms of augmentation). Alpha extends to
its client applications the same opportunities for taking advantage of multiple special-pur-
pose as well as general-purpose processors at each node.

Alpha presents a programming model which is object-oriented, in the sense of support-
ing basic programming units which adhere to the definition of abstract data types. This
imposes a structure and discipline conducive to modular software at both the operating
system and application levels, as well as improving fault isolation. The active entity, or
unit of logical computation, is known as a thread, whose execution progresses through
objects via operation invocation, without regard for address spaces or node boundaries;
distribution and reliability are the responsibility of Alpha instead of the user. This net-
work uniformity and transparency greatly aid the creation and modification of distributed
applications.

Alpha is the first systems effort of the Ar'chons Project, and the prototype was created
at Carnegie-Mellon University directly on multiprocessor nodes constructed with Sun
workstation hardware [Northcutt 88b]. It has been demonstrated with a real-time con-
trol application written by its first industrial user, General Dynamics [Maynard 88]. An
enhanced, second-generation, commercial-quality version being produced at Kendall
Square Research is portable but initially targeted at one of their multiprocessor products.
Both versions of Alpha are sponsored by the USAF Rome Air Development Center and
are in the public domain for U.S. Government use.

Final Technical Report

B-4 Alpha Requirements and Rationale

1 Introduction
The overall goals of the Archons project involve the exploration of both architectural

and operating system issues related to real-time command and control. The Archons
project began following a major hardware construction effort (i.e., the HXDP [Jensen 78a]
system constructed at Honeywell's Systems and Research Center), is now in the midst
of an operating system construction effort, and plans are being made for the next phase of
hardware construction.

The research described in this document is based on a significant amount of theoretical
study and substantial experience with a variety of actual real-time command and control
problems and systems. The Alpha operating system is being developed as the first
implementation effort of the Archons project. This empirical effort is an important phase
in the project's overall "think-do" strategy-i.e., a research approach based on a repeat-
ing cycle of conceptualizing and theorizing, designing and implementing, then measuring
and evaluating.

The Archons work is focused on pushing in new directions to achieve greater benefits
than is available by obtaining the next increment from some aging technology. Alpha is
not merely an academic exercise, but a validation of the project's conceptual efforts.
Real-time command and control is an area that is well understood by the members of the
Alpha team (which represents over 70 years of collective experience in the real-time
area), as is the need for research to advance the state of the art in the area. Alpha is
directed more towards meeting the needs of this problem area than simply generating
academic publications.

Real-time command and control applications demand a new kind of operating system
which directly addresses their special requirements in the areas of: meeting user-speci-
fied real-time processing constraints, supporting complex distributed applications, surviv-
ability under hostile attack, and adaptability to evolving needs across (frequently decade-
long) system lifetimes. These characteristics all demand that the operating systems
needed for real-time command and control differ drastically, not just in degree but in kind,
from conventional ones, calling for dramatically innovative concepts and techniques. Very
little technology has, or will, come from the mainstream academic and industrial operating
system research and development community, which is primarily focused on completely
different types of applications (e.g., personal productivity workstations, throughput-ori-
ented numerically intensive computing, and time-independent transaction processing).

The real-time command and control application area has vital requirements which
strongly differentiate it from the context in which almost all academic research and com-
mercial product development on operating systems takes place. First, most of the activi-
ties in the system (and therefore in the computer) have stringent time constraints which
are a matter of correctness rather than convenience, and responsiveness to these con-
straints, not throughput, is the primary metric of performance. Second, the safety of
human life and property depends on the survivability of the system, despite its being sub-
jected to warfare. Third, even though the system consists of physically dispersed ele-
ments, they are all dedicated to cooperatively performing a single mission, instead of
being simply a network of communicating but otherwise independent and unrelated indi-
vidual entities. Finally, the system must be adaptable and evolvable to accommodate

Final Technical Report

Alpha Requirement and Rationale B-5

significant changes in the mission, the environment, and the technology base across a
period of decades, often while remaining in non-stop service.

Another crucial, but often overlooked, factor in achieving the most cost-effective real-
time operating system is that the performance of the system must be optimized for the
high-stress exception cases, such as emergencies caused by hostile attack or faults,
even if the normal case performance must be suboptimal to accomplish that. This is dia-
metrically opposed to the prevailing approach in non-real-time operating system design
and implementation, where performance is optimized for the most common case at the
expense of less frequent cases.

The programming model that was developed in this effort stems from an examination of
the requirements of the problem area, the in-depth study of several key techniques for
solving the fundamental problems, and the application of sound engineering trade-offs in
combining the individual features into a coherent system. This is different from other
operating system efforts in a number of ways. The design of Alpha was derived top-
down, from high-level requirements and not bottom-up, from a set of implementation
details. Most significantly, Alpha was not constrained to be compatible with existing
(system or application) software, and so the exploration of the major research concepts
was not compromised by having to splice the newly developed features into an existing
system.

The Alpha programming model was derived from the requirements defined for the Alpha
c.perating system's chosen application domain-i.e., distributed real-time command and
control applications. There is a unique combination of requirements implied by this appli-
cation domain, and existing systems either do not attempt to meet these requirements at
all, or do not do so in a comprehensive, well-integrated fashion. The Alpha programming
model provides features that meet each of the main requirements of the defined applica-
tions domain.

This is a technical overview of the Alpha operating system, with emphasis on the fea-
tures of systems research that are frequently overlooked, such as the context within
which Alpha is being created, and the assumptions upon which this work is based. In
this document, the Alpha operating system's intended application domain is defined, and
the special requirements of the chosen problem area are described. This report goes on
to motivate the project's work by exploring the ways in which existing operating systems
do not adequately address the needs of this area, and the technical approach taken in
Alpha is presented in brief. Finally, some of the rationale for the design of the Alpha sys-
tem is given and specific features of the system are related back to the defined require-
ments.

Final Technical Report

B-6 Alpha Requiremen and Rationale

2 Application Domain
This section describes the application domain from which the Alpha operating system's

requirements were derived. The intent of this description is to explicitly define the
assumptions upon which this work has been done, in order to provide a basis upon which
to state the rationale for the Alpha operating system and to provide a context in which
the work can be judged.

2.1 Distributed Systems
Because of the widely differing definitions of "distributed systems" that abound in the

literature, it is important that the definition used in this document be made explicitly
clear. For the purposes of this research, a decentralized computer is considered to be a

machine that consists of a multiplicity of physically dispersed processing nodes, integrat-
ed into a single computer through a native, global decentralized operating system [Jensen
78a] (as shown in Figure 1). A decentralized operating system manages the system's
collective, disjoint physical resources in a unified fashion, for the common good of the
whole system. This permits a distributed system's disjoint resources to be applied
directly to a single application.

A logically singular, yet physically dispersed computer is highly appropriate in many
contexts (e.g., real-time command and control). In particular, decentralized computers
provide independent failure modes for reliability, multiple execution units for concurrency,
and a flexible interconnection structure for extensibility.

Distibuted Appicato

node. w nodek

Decentralized OS

Figure 1: Example Decentralized System

It is often necessary or desirable that an application be distributed across multiple
nodes in a decentralized computer system. A distributed application is far more integrat-
ed than individual applications which share resources or even interact. A distributed
application is conceptually a singular entity created with a coherent, consistent perspec-
tive and set of objectives, not separate entities which each have their own independent

Final Technical Report

Alpha Requrements and Rationale B-7

objectives without concern for, or even awareness of, others. The constituent computa-
tions of a distributed application may extend across physical node boundaries (for a vari-
ety of reasons), rather than each being confined to its own local address spaces and the
rescuircs c, one nad.

A decentralized operating system consists of replicated copies that constitute the
native operating system on all the system's processing nodes. However, the system's
resources are managed in a global fashion. This is done either by direct coordination
among the various instances of the kernel, or locally by each kernel instance as conse-
quences of the higher-level resource management decisions.

These system characteristics are quite different from those of more traditional multipro-
cessors, computer networks, and other systems with similar hardware structures. For
example, in computer networks (such as shown in Figure 2) the resources at a particular
processing node are managed by the operating system local to that node, and the collec-
tion of autonomous, local operating systems interact in limited ways (e.g., to support
such application purposes as file sharing, mail, and remote login) [Lampson 81]. Further-
more, the emphasis in the work described here is on multi-computer systems which do
not have shared primary memory, separating it from operating systems built on multipro-
cessor hardware [Jones 79, Ousterhout 80, Wulf 81].

It should be noted that the hardware structure of a decentralized computer system, as
defined here, need not be different from that of typical local area networks (i.e., a collec-
tion of processing elements with private memory and local peripheral devices, intercon-
nected by an interconnection network). It is usually the operating system software alone
that separates decentralized computer systems from local area networks.

=Application Application Application>

Network Network etwrkUiiis Utilities Utilities

ode 0N OS ode OS

Figure 2: Example Distributed System

Final Technical Report

B-8 Alpha Requirements and Rationale

The class of distributed real-time command and control systems of interest in this
research involves on the order of 10 to 100 processing nodes, physically dispersed across
a distance on the order of 10 to 1000 meters.

2.2 Real-Time Command and Control
According to the definition used in this research, real-time computer systems control

one or more physical processes whose states are sensed and altered by the computer
system. The state of these processes changes independently as a result of the external
environment, which is not completely under the control of the computer system. The prin-
cipal distinction of real-time computing systems is that the physics of the application
imposes time constraints (e.g., deadlines) on some of the computations. These con-
straints are not simply performance metrics, or an issue of programmer convenience, but
are part of the correctness criteria for those computations.

The emphasis in real-time systems today is on a very specific subset of the general
real-time application domain, and it is this area that is most typically assumed when the
term "real-time" is used. The special case that the greatest amount of effort has been
directed towards is the area of the lowest level sampled-data monitoring and control of
physical processes-i.e., dataflow/pipelined signal processing or sensor/actuator feed-
back control. Furthermore, because these applications are inevitably considered to be
rigidly periodic and deterministic, this popular view of real-time systems is not even an
accurate perception (much less an optimal treatment) of the intended case.

There is a great deal more to real-time systems than is encompassed by the typical
low-level view, however the larger real-time picture is based on the general notion that
arbitrary computations may have constraints on their times of execution. In the most
general real-time case, the application's time constraints may vary dynamically, the time
constraints may not be predicted ahead of time, and not all of the computations that make
up an application have time constraints associated with them at all times.

The class of real-time system considered in this research is known as supervisory-lev-
el command and control. Supervisory control is a middle-level function in the real-time
application hierarchy-above the sampled data loop functions and below the human inter-
face/management functions (see Figures 3 and 4). The area of real-time supervisory con-
trol is representative of the characteristics of the larger real-time application domain.
Supervisory control systems do little direct polling of sensors and manipulation of actua-
tors, nor do they provide extensive man/machine interfaces; rather, they interact with
subsystems which provide those functions. In addition to having activities with critical
time constraints, the behavior of real-time command and control systems is predominant-
ly dynamic (i.e., aperiodic, asynchronous, and stochastic). Supervisory real-time com-
mand and control systems are found in plant (e.g., factory or refinery) automation, vehicle
(e.g., airborne, aerospace, or shipboard) control, and surveillance (e.g., air-traffic control)
systems.

Some tasks in real-time command and control systems are periodic and are bound to
process activity rates, but most are aperiodic with stochastic parameters and are associ-
ated with external stimuli as well as the interactions of the system with low-level control
subsystems [Boebert 78]. The real-time response requirements of a supervisory control
system are closer to the millisecond than either the microsecond or second ranges.

Final Technical Report

Alpha Reqadremenu and Rationale B-9

H,!M

Figure 3: Real-Time Supervisory Control Context

Many command and control applications (and their I/O subsystems) are physically dis-
persed, and for this reason map well onto distributed computer systems. Furthermore,
the distributed nature of these command and control systems suggest that they be imple-
mented as distributed application programs. The concurrently executing computations
within these distributed applications exhibit more cooperative behavior than those among
other distributed apphcations. This is especially true of real-time command and control
applications, where the concept of independent users does not exist as it does in typical
timesharing and computer network systems [Thomas 78]. Rather, the whole system is
dedicated to performing a particular mission that can be thought of as having a single
user, comprised of the physical processes being controlled.

Final Technical Report

B-10 Alpha Requirements and Rationale

Level Function Operating System Processor
4 Management Information System VM(IBM) 3083 (IBM)
31 Plant M agmetSy~stem VS (DFC) 8800 (DEC)
2 Supervisory Control System Alpha S un-3 (SMI)
1 Machine Control System VRTX (H&R) 11/23 (DEC)
0 Sensors/Actuators none various

Level 4

Level 3 7

Level 2

Level 1

Level 0

Figure 4: Example Real-Time Systems Hierarchy

Final Technical Report

Alpha Requirements and Rationale B-i1

3 Special Requirements
A number of significant requirements accompany the distributed real-time command

and contiul applicati.,n ;amain. Some of these requirenments are unique to this context,
and others, while generally applicable to a wide range of systems, are especially impor-
tant here. It is these application requirements that form the basis from which the Alpha
operating system's programming abstractions and supporting facilities were derived.
The requirements of this application domain can be grouped into four categories-i.e., fea-
tures associated with the timely execution of programs, issues related to the physical
distribution of the system, matters concerning the robustness of the system and applica-
tion code, and the demands for adaptability at both the system and client levels.

3.1 Timeliness
In a real-time system, computations must be performed in accordance with the time

constraints imposed by the physical processes being controlled. Furthermore, because of
the dynamic nature of the external processes being controlled by a real-time system,
some amount of the application's state information is time-dependent and its value
dgrades with time. For these reasons, the timeliness of the computational activities
performed by a real-time system is an integral part of the definition of correct system
behavior. In a real-time system it is not sufficient to ensure only that data generated as
a result of a computation is correct and consistent, it must also be made available in a
timely fashion for the result to be considered correct.

An operating system that is to support real-time applications must provide mecha-
nisms which take these time-related issues into account and assist application programs
in meeting their time constraints [Jensen 76b, Wirth 77]. There is a range of degrees to
which a system can support the needs of real-time applications. A system could make it
difficult to meet real-time demands (e.g., by trying to enforce a "fairness" policy in
resolving contention for resources), it could provide mechanisms that help in the construc-
tion of real-time applications, or it could be structured so as to attempt to make real-time
guarantees for its applications. Clearly, the term "real-time" does not define a simple
dichotomy among operating systems, but rather there is a range of metrics with which
any given operating system can be judged as supporting the needs of real-time applica-
tions. The more that a system does to enhance the ability of client programmers to cre-
ate applications that meet their timeliness constraints, the greater claim the system has
to being "real-time."

There are a number of standard requirements associated with all real-time systems;
the least recognized, but most important of these is the notion of time-driven resource
management. All of these requirements are discussed in the following subsections, along
with some of the commonly held misconceptions about the general requirements for real-
time operating systems.

3.1.1 Standard Requirements
Irrespective of their technical merit, there are some widely accepted requirements for

real-time operating systems. Among these requirements are a number of features that
are common features of modem operating systems that, because of advances in computer
technology, have only recently become practical for use in real-time operating systems

Final Technical Report

B-12 Alpha Requirements and Rationale

(or are just being discovered by practitioners in the area of real-time systems-see
[Glass 80]).

Real-time operating systems have been receiving a great deal of attention in recent
times, however this attention has largely resulted in the rediscovery of features found in
traditional, full-featured operating systems (e.g., dynamic multiprocessing, interprocess
communications, address space protection, and high-level synchronization mechanisms).
This is similar to how much of the work in microprocessors has resulted in the rediscov-
ery of features found in traditional, full-featured mainframes (e.g., I/O channel processors
and memory management).

In addition to those requirements that are common to modem operating systems in gen-
eral, there are those which are primarily performance enhancements--e.g., fast context
swaps, low interrupt latency, and high-bandwidth I/O. Other requirements affect only the
implementation and are not directly visible to the client--e.g., allowing portions of the
system to be paged, allowing preemption while executing within the kernel, providing for
the streaming of data to/from contiguous regions on disk, and bounding execution times
for system services. Some of these commonly held requirements have to do primarily
with the system's implementation, but are visible to the client-e.g., the ability to pre-
allocate system resources, and the ability to lock code/data into memory (i.e., prohibit the
system's virtual memory subsystem from removing a region of primary memory). Yet
other of these standard requirements are generally useful features that are visible to the
client-e.g., the ability to access I/O devices directly from user space, the ability for
clients to define (and load) custom device drivers, the ability to force writes to disk, and
the ability to be asynchronously notified of specific I/O, exception, and application-specif-
ic events.

These standard requirements are largely taken for granted in the Alpha operating sys-
tem research effort. These requirements are recognized as being important to the devel-
opment of practical real-time systems, and the significant effort required to meet them is
not underestimated. However, the focus of this research is on the other requiremeats
defined in this chapter, because of the relatively large amount of experience and relatively
small degree of complexity that the more common requirements exhibit with respect to
the other requirements (e.g., distributed, reliable, time-driven resource management).

3.1.2 Time-Driven Resource Management

Fundamental to the definition of all operating systems is the management of system
resources, and similarly the major factor in providing support for real-time applications
has to do with how an operating system manages its resources. To support the needs of
real-time applications, an operating system must manage resources in such a fashion as
to attempt to ensure, to the greatest extent possible, that the timeliness constraints of
its application programs are met. In addition to managing system resources in an effi-
cient and consistent fashion (as all operating systems should), if the system manages its
resources based directly on the actual time constraints of the application, this is known
as time-driven resource management. According to this definition, the primary issue in
the creation of real-time systems is the amount and degree of time-driven resource man-
agement that they perform.

Final Technical Report

Alpha Requirements and Rationale B-13

In the extreme case, whenever a real-time operating system makes a decision as to
how an instance of contention for some resource is to be resolvedt, it considers the
impact of its decision on the timeliness of the computations that may be affected. Operat-
ing systems that resolve instances of system resource contention based on a metric oth-
er than timeliness (e.g., fairness or throughput), do not work to meet the application's
time constraints and are not as qualified to be termed real-time systems.

An implication of time-driven resource management is that the operating system must
be given (or be able to infer) the application's time constraints, and must be able to
determine the impact of its resource management decisions on the application. In gener-
al, an operating system can only perform crude, brute-force types of resource manage-
ment without (either explicit or inferred) guidance from the application. An adaptive, real-
time operating system must receive (run-time or compile-time) inputs from its clients in
order to resolve contention for system-managed resources in the desired fashion. Clear-
ly, the more information that the operating system has, the better it can do in managing
resources so the application's time constraints can be met. Similarly, the closer that an
operating system's abstractions are to the programmer's abstractior, the less transfor-
mation must be performed (either by the programmer or the system) to map the applica-
tion's timeliness requirements into the form needed by the system to manage its
resources, and the easier it is for the operating system to determine the effects of its
management decisions on the application.

3.1.3 Common Misconceptions
In addition to these requirements, there are some commonly held misconceptions con-

cerning the requirements for real-time operating systems. Some of these beliefs are
derived from valid requirements of specialized subsets of the general real-time applica-
tion domain. However, most of these mistaken beliefs stem from primitive attempts at
dealing with the difficult problems of real-time systems by attempting to cast the problem
into a form that is more intellectually manageable, or that might be amenable to the appli-
cation of some existing analytical tool. The most serious of these myths are that priority-
based schedulers adequately support the needs of real-time applications, that real-time
applications are predominately periodic in nature, and that poor system resource utiliza-
tion can be used as an effective substitute for time-driven resource management.

3.1.3.1 Priority-Based Processor Scheduling

A common misconception about real-time systems is that all applications' timeliness
requirements can be met with a simple priority scheduler. Firstly, it should be noted that
scheduling is not the only resource management activity that an operating system per-
forms. Because application software makes requests for resources primarily when a soft-
ware unit has been dispatched, and because there is contention for processor cycles
whenever more than one schedulable software entity in a system is ready to run, the
management of processor cycles (i.e., scheduling) is an important and frequent resource
management activity in any operating system.

tNote that the manner in which resources are managed is not significant if there is no contention for the
resources-4.e., if there are enough resources to meet all of the demands.

Final Technical Report

B-14 Alpha Requirements and Rationale

The use of a priority scheduler does not go very far towards supporting the needs of
real-time applications. In the form they are most ofte- ,%uiad, priority schedulers exhibit
a number of problems. For example, when dealing with periodic activities, the notion of
priority is derived (more or less directly) from application time constraints--e.g., static
rate-monotonic priorities, and dynamic deadline priorities. However, the time constraints
of aperiodic activities tend to be mapped in a much less methodological fashion into a nar-
row range of small integers intended to signify relative priority. This is because aperio,4;.c
activities are less amenable to analytical treatment, and integer priorities are thought to
be more computationally tractable than actual time constraints.

There are numerous deficiencies with the typical, ad hoc, uses of priorities. Included in
the list of problems is the fact that much valuable information is lost in crude transforma-
tions from the time domain and into priorities, such as when a single metric is used to
express two orthogonal ,Ciracteristics of a computational activity--e.g., the timeliness
requirements of a computation and the importance of its execution to the application. Fur-
thermore, the range and resolution of the priority scale is often too limited to accommo-
date the number and gradation of characteristics of application activities. Fixed priorities
also represent a premature binding of the dynamic information associated with computa-
tions that denies the system the opportunity to adapt to the many important changes pos-
sible at execution time--e.g., stochastic variations in load and resource contention, and
faults, errors, and failures. The assignment of fixed priorities to computational units in a
system requires a great deal of trial-and-error manipulation to achieve the desired
effects. Furthermore, in some cases there does not exist a fixed priority assignment
which allows all the activities to meet their time constraints, even though the system's
resources might be under-utilized (see Figure 5).

Priorities which are dynamic overcome many of the adaptability and flexibility restric-
tions of static priorities, but even dynamic priorities (such as deadlines) suffer from seri-
ous disadvantages. Among the problems with dynamic priorities are: not begin able to
represent both the urgency and importance of computations, not being able to express
both the hard and soft varieties time constraints, not having the power and expressive-
ness to depict a variety of different types of time constraints, and not being able to deal
gracefully with overload conditions.

The real-time environment addressed by Alpha demands a type of scheduler that sup-
ports a dynamic expression of the timeliness constraints of each computation. Such a
scheduler must also be able to determine how to allocate processor cycles to each of the
application's schedulable software entities in such a way as to meet the application's
time constraints whenever possible, and follow the system's overload handling policy
when all of the application's time constraints cannot be met.

3.1.3.2 Deterministic Systems

Another myth is that real-time systems must behave in a highly predictable fashion in
order for the system's performance "guarantees" to be met [Stankovik 88]. While many
systems rely on the assumption that real-time applications are strongly periodic, the
rigidly cyclic style in which typical (low-level) real-time systems are designed is rarely
due to any inherent property of real-time applications. Instead, periodicity is only a par-
ticular technique which is believed to simplify the management of actual time constraints.

Final Technical Report

Alpha Requirements and Rationale B-15

Static Priorities:

A, priority > A2 priority

A2 priority > A, priority

A :-NO.N/OWN-> '~/

Dynamic Priorities:

AY / / ...i/

Execution Window - ED Required Time - Missed Window -

Figure 5: Static versus Dynamic Priorities

This is despite the fact that many real-time applications include devices (and thus com-
putations) which appear to exhibit periodic behaviors, such as: sensors which generate
data on a physically cyclic basis; actuators which require recurring positional updates;
and displays which need to be refreshed regularly. The classical periodic approach to
expressing and handling such characteristics is to define a fixed iteration period for the
cyclic, recurring, or regular activity, schedule all future iterations of that activity collective-
ly in advance, and mutually synchronize (if pos able) all periodic activities (e.g., into rate-
groups) [Leinbaugh 80].

General real-time command and control systems and their applications cannot be con-
strained to behave in a highly deterministic fashion. Only certain, very stylized, computa-
tions (e.g., signal processing) exhibit such rigidly predictable behavior, and the underly-
ing (possibly distributed) system cannot be constrained to behave in such an idealized
fashion. Some periodic approaches are based on highly deterministic envirtnmental
assumptions--e.g., no exceptions occur during the system's execution, there are always
sufficiz:t resources to meet the application's needs, and activities always take the same

Final Technical Report

B-16 Alpha Requirements and Rationale

amount of time to complete. Operating systems that are based on such simplistic and
unrealistic assumptions do not meet the needs of the greater space of real-time control
problems. For larger and more demanding distributed real-time command and control
systems, it is less reasonable to make such assumptions because the behavior of these
systems is necessarily much more complex, dynamic, and stochastic, nor is it possible to
constrain the system to behave in the desired fashion.

It is quite difficult to construct a system that is adaptive and yet able to meet deman-
ding timeliness constraints, because adaptive distributed algorithms are difficult to create
and tend to be costly in terms of performance. Nonetheless, such techniques must be
developed to deal with the true needs of general real-time control applications.

3.1.3.3 Excess Assets

Another real-time myth is that an excess of system resources is sufficient to meet the
demands of real-time applications. The belief that excess resources solves real-time
application needs stems from the fact that if there is no contention for (or low-utilization
of) system resources, then the resource management strategy employed by the operating
system is not significant. It is true that the brute force approach of providing a sufficiently
high degree of excess hardware assets, alone, would be capable (in principle) of meeting
the computational needs of virtually any real-time applications. However, the complete
suite of requirements for actual real-time systems cannot be met with such a simplistic
approach. It is the demands of other system attributes, such as cost, size, weight, and
power, that require system resource management schemes which do not depend on low
resource utilization to meet application-level timeliness constraints. Also, practical
experience shows that applications expand to fit the size of their systems, and that there
are rarely enough resources to meet the basic needs of the application, much less the
degree of excess assets needed to meet timeliness constraints in this highly non-cost-
effective manner.

3.2 Distribution
One of the major functions of decentralized operating systems and network operating

systems is to manage the inter-node communication resources for the clients. But in a
distributed system, it is highly desirable that physical dispersal of the underlying hard-
ware be made transparent at a low level in the system (i.e., the kernel). In this manner,
both the system and the application programmers benefit from features such as physical-
location-transparency, similar to how programmers benefit from a system-provided pro-
cess abstraction. However, there are a number of cases (e.g., work assignment, redun-
dancy management, specialized function location, or diagnostics) in which it is appropri-
ate to provide clients of the kernel with information concerning physical location.

In a distributed system, system and application software is normally based on thin-
wire [Metcalf 72], as opposed to shared memory, interconnection techniques. This sug-
gests that performance, availability, and robustness would suffer if system mechanisms
were to make use of centralized structures. Furthermore, the physical dispersal of the
system hardware introduces variable and unknown communication delays that exacer-
bate the already difficult task of attempting to ensure deterministic behavior of the sys-
tem. The kernel mechanisms for decentralized systems must therefore be adaptive and

Final Technical Report

Alpha Requirements and Rationale B-1 7

deal explicitly with the effects of physical dispersal-i.e., inaccurate and incomplete infor-
mation. Although it is below the kernel level and deals with a small number of simple,
static resources, the ARPANET routing algorithm [McQuillan 80] provides an example of
this type of behavior.

Integrating physically dispersed hardware into a logically unified system at the operat-
ing system level means that the clients of a decentralized operating system should not be
required to be aware of, much less manage, the physical dispersion of hardware and soft-
ware, nor the many complex consequences thereof. These issues should not be allowed
to distract the clients from performing their application tasks. A decentralized operating
system sapports distributed applications without requiring users to perform the neces-
sary distributed resource management. Such an operating system provides the client pro-
grammers with a coherent distributed programming model. It also provides the manage-
ment of physically dispersed resources necessary to transparently integrate the sys-
tem's processing nodes into an actual (not just apparent) single system. All of these
functions should be performed by a decentralized operating system, without depending on
any form of physically, or even logically, centralized control.

3.3 Robustness
In the context of this effort, robustness means the extent to which the application con-

tinues to function fully and correctly (including meeting the system's timeliness require-
ments) in the face of failures (which is meant to include faults, errors, and failures as
defined in [Avizienis 78]).

3.3.1 Implications of Distributed Real-Time Control

The nature of the physical processes being controlled in real-time command and control
systems is usually such that the safety consequences (in terms of personal or property
damage) of not managing them properly can be quite severe. Thus, the robustness of a
real-time control system is of utmost importance, often being more significant than the
cost or performance of the system.

Furthermore, it is often the case that the controlling real-time system is embedded and
cannot be maintained easily. Should a component fail, it can be quite difficult (if not
impossible) to gain access to the system to perform the necessary repairs, and frequently
repairs must be made without interrupting the normal functioning of the system. The mis-
sion times-i.e., the period of time when the system must continue to provide correct ser-
vice, uninterrupted by either maintenance or repair activities-of real-time systems can
range from hours to years, and there is no single adequate approach to dealing with the
issues of robustness posed by each of these cases.

A decentralized operating system for the real-time control environment has special
robustness requirements which are more elaborate than those for conventional network
and distributed operating systems. For example, the function of providing physical loca-
tion transparency of software modules is not complete without handling the automatic
detection of, and supporting recovery from, node and interconnection failures. Further-
more, a decentralized operating system is itself a set of distributed programs and special-
purpose distributed (both replicated and partitioned) databases. This fact has major
implications on the construction of the system, and calls for the use within (not just

Final Technical Report

B.18 Alpha Requirements and Rationale

above) the operating system of robustness techniques inspired by traditional distributed
databases, such as atomic transactions and the automatic management of replicated data.

To support the overall robustness goals of a distributed real-time command and control
application, the system software must itself meet a certain level of robustness. In addi-
tion to this, the system must provide mechanisms that allow suitably reliable applica-
tions to be constructed. The operating system should not dictate a specific kind and
degree of robustness, but rather it should allow its clients to choose what is desired for
each individual set of circumstances, at a cost that is appropriate. Such a flexible, mecha-
nism-based approach is conceptually more difficult to design, but supports increased sys-
tem efficiency, in that the operating system's clients are free to make the appropriate
cost/functionality tradeoffs on a case-by-case basis within their application programs.

3.3.2 Major Robustness Concepts

The distributed real-time command and control application domain calls for a set of
operating system mechanisms that support the following robustness concepts: correct-
ness of data and actions, availability of data and services, graceful degradation of func-
tion, and fault containment. While these concepts are useful in almost any system, they
are critical in this application domain.

3.3.2.1 Correctness of Data and Actions

The correctness of the actions performed by an application is a function of time,
sequencing, and completeness-Le., the correctness of a set of actions is defined by the
amount of time it takes each action to execute, the order in which actions execute, and
whether, at the end of the set of actions, they were all successfully executed. The cor-
rectness of data is defined by its self- and mutual-consistency as well as its timeliness
of visibility. It must be possible for the programmer to ensure that actions which manipu-
late data leave it in a consistent state, despite any failures that may occur in the course
of the data manipulation.

To provide for the correctness of data and actions, an operating system must support
some form of atomic transaction facility [Lampson 80, Moss 85]. Such a facility ensures
the atomicity, permanence, and serializability attributes of atomic transactions are made
to apply to computations that execute within the defined boundaries of atomic transac-
tions.

3.3.2.2 Availability of Services and Data

The availability of services and data is defined to be the extent to which each service
(and the data it encompasses) remains available to clients across system failures. Typi-
cally, a service that is statically and uniquely bound to a particular hardware functional
unit becomes unavailable should that hardware unit fail. To increase the availability of
services, failures that may result in service disruption must be eliminated, or the means
must be provided for resuming the service elsewhere when a failure occurs. The dynamic
nature of the physical processes being controlled implies that a great deal of information
in a distributed real-time control system degrades with time. This dictates that the avail-
ability of information is at least as important as, if not more important than, its consisten-
cy. Under some circumstances in real-time applications there is little value in maintain-
ing the consistency of a database if the information is unavailable for use when needed.

Final Technical Report

.Alpha Requirements and Ratonale B-19

Similarly, when the correctness of the information in a database degrades over time,
there may be little point in attempting to restore it to a meaningful consistent state fol-
lowing a period of unavailability.

For an operating system to provide for enhanced availability of services and data, some
facility must be included to manage redundant copies of code and data-i.e., some type of
replication scheme [Bayer 79] must be supported by the system.

3.3.2.3 Graceful Degradation of Function

Graceful degradation of function is defined to be the property of a system that permits it
to continue providing the highest level of functionality possible as the demand for
resources exceeds its currently available supply. In the context of this wo-k, whenever
contending requests for resources cannot all be met in an acceptable time, the contention
should be resolved in favor of the functions that are most critical to the objectives of man-
aging the physical processes being controlled. Information concerning the relative impor-
tances of individual application tasks can be provided only by the application program-
mer. To provide gracetul degradation, the system could use this importance information
to determine which tasks' needs will not be met, in order to sustain the highest and most
useful level of functionality possible under a given overload condition.

In addition to providing a scheme for load-shedding under overload conditions, a real-
time operating system should be based on hardware with separate, independent failure
modes (e.g., a distributed system) in order to provide support for graceful degradation of
functionality. In addition, the operating system must provide mechanisms for node failure
detection and recovery (e.g., location-transparent communications and migration/reconfig-
uration mechanisms).

3.3.2.4 Fault Containment

Fault containment is defined to be a -.,--)perty that inhibits the propagation of errors
among system components. If a failure c.,urs (or is induced) in a system or application
component, the operating system mechanisms should limit (or assist its clients in limit-
ing) the extent to which the failed component can adversely affect the behavior of others.
For example, the operating system should not permit a failed software component to arbi-
trarily modify the state of other components, either intentionally or by accident. (This
point of view is in direct opposition to the current trend toward "light-weight process-
es.") Furthermore, for this property to hold, mechanisms must ensure that a failed soft-
ware component cannot consume resources in an unconstrained manner and thereby
interfere with other, presumably good, software components.

While some degree of fault containment can be provided at compile-time, in many cases
the only effective way of enforcing the containment of faults is by way of system-provided
hardware mechanisms (e.g., a memory management unit). In order to achieve the bene-
fits of fault containment, the price of enforcement must be paid. While it is clear that
most systems can be made to run faster if they do not provide defensive protection mea-
sures, it is not as clear that the robustness increase is not worth the price paid in terms
of performance (especially in systems where robustness is a critically important
attribute).

Final Technical Report

B-20 Alpha Requirements and Rationale

3.3.3 Optimizing for Exception Cases

An additional robustness characteristic of real-time systems is that the correct and
timely execution of a real-time command and control application is typically more impor-
tant under exception conditions than in normal cases. Also, the nature of exceptions
(such as hardware failures due to physical damage) in these systems is such that they
tend to be clustered in both time and space-as opposed to being randomly (e.g., normal-
ly) distributed, as is commonly presumed in other contexts. These characteristics have a
significant impact on the nature of the fault tolerance and recovery techniques used in
systems, and are contrary to the premises underlying almost all non-real-time computing
system approaches (e.g., RISC-style operating system philosophies and the "end-to-
end" argument) [DRC 86]. The designer should make an effort to perform reasonable
engineering tradeoffs in the system design to ensure that the proper emphasis is placed
on the exception conditions and not have the system be optimized exclusively for the
expected, non-exceptional cases.

Figure 6 provides an sLmplified illustration of the types of tradeoffs typically made in
non-real-time systems (6a), and the objective that real-time systems should aspire to
(6b). It should be noted that a higher degree of steady-state overhead may be tolerated
by real-time systems in order to reduce the magnitude and variance of performance
-esulting from exceptions.

Non-Real-Time System Real-Time System

0 Exception 0
V V
e e
r r Exception
h h
e e Normal I
a Normal ad d

a) time b) time

Figure 6: Optimizing for Exception Cases

3.4 Adaptability
In real-time command and control systems, modifications, technology upgrades, test-

ing, maintenance, and other life-cycle items invariably make up the most significant por-
tions of a system's cost [Savizky 85]. Typically, the software-related costs predominate
because the requirements are poorly understood at system design time and continue to
evolve throughout, not just the design and implementation phase of the system, but even
during the system's lifetime (which may be a decade or more) [Boehm 81, Lehman 85].
The principle reasons for this are that: the application is extremely complex and is not

Final Technical Report

Alpha Requiremen and Rationale B.21

(perhaps cannot be) well understood; the application environment (e.g., the product or
threat) varies according to economics, geopolitics, doctrine, etc.; computer technology
changes rapidly, making some desirable system attributes possible and others more cost
effective, but also making older technology unaffordable or inaccessible; and the comput-
ing system is frequently viewed as the ultimate recourse for accommodating system
changes (because modifications are always just "a simple matter of programming").

This implies the need for system software to provide a programming model that sup-
ports such desirable software engineering attributes as adaptability and maintainability.
Because these attributes are more frequently associated with languages than operating
systems, an operating system for real-time command and control might facilitate adapt-
ability by taking into account the run-time packages of languages that address these
attributes of adaptability.

In the realm of real-time command and control control, system sizes range from quite
small (e.g., an individual vehicle), to very large (e.g., an entire plant). Furthermore, in a
decentralized system, processing nodes may be added and removed (either statically off-
line, or dynamically due to the run-time failure and recovery of hardware). The operating
system must itself be able to function effectively across a wide range of application and
system sizes to take advantage of the opportunities for extensibility offered by the inher-
ently modular hardware architecture of a distributed system, and to provide the robust-
ness available from reconfiguration.

The need for the properties of modularity and extensibility are not unique to decentral-
ized computer systems. Centralized systems may provide the necessary level of perfor-
mance for a given application and may incorporate system software that is quite modular
and extensible; however, centralized uniprocessor and multiprocessor hardware pose
quite severe limitations in these respects. Decentralized systems offer a wider range of
cost/performance choices than is usually available from a family of centralized processors
or shared-memory multiprocessors. Overall, the physical properties of decentralized
systems offer the potential for greater robustness, extensibility and adaptability, both
within the system as well as in the applications [Franta 81].

Modularity and extensibility (even more so than robustness) are considerably more dif-
ficult to quantify and measure than other system attributes, such as performance. This
may account for the fact that concern for performance (usually in the form of throughput)
often dominates other considerations, fostering the misconception that these other sys-
tem attributes are of lesser importance. This is unfortunate since system performance
increases are derived automatically from advances in semiconductor technology, while
increases in system robustness, adaptability, and extensibility result almost exclusively
from thoughtful effort by system designers.

Final Technical Report

B-22 Alpha Requirements and Rationale

4 Current Practice
Operating systems in existence today (even those claimed to be "real-time") do not

adequately address the requirements posed by the type of distributed real-time command
and control applications described here. While some systems deal with certain aspects
of the overall problem, it is safe to say that none meets even a significant number (much
less all) of them. In the following sections, current operating system practice is exam-
ined with respect to each of the previously defined major requirements areas for real-time
command and control applications.

4.1 Timeliness
It is not reasonable to characterize operating systems simply as being real-time or not,

but rather there is a spectrum, into which all systems fit, that defines the degree to which
the system can meet the demands of various real-time applications. The aspects of oper-
ating systems that increase their suitability for real-time applications are not manifest
merely in the inclusion or exclusion of specific functions, nor does the inclusion or exclu-
sion of any functionality, in itself, make an operating system unsuitable for real-time use.

Today there is range of meanings for the term "real-time operating system," as evi-
denced by the widely disparate types of systems that are referred to as being real-time.
The applicability of this term to a particular piece of system software can best be judged
by examLiing two fundamental aspects of the system-namely, the extent to which it is
an operating system (i.e., the kind and degree of resource management that it per-
formed), and the extent to which it is real-time (i.e., the kind and degree of support for
meeting users' time constraints that is provided).

Today's real-time "operating systems" vary widely in the kind and degree of
resources they manage, programming models they support, and the degree to which unde-
sirable artifacts of the underlying hardware are obscured. For example, the types of sys-
tem software that is sometimes referred to as "real-time operating sysiems" range from
simple rate-monotonic dispatchers (e.g., for avionics [GD 80]), to minimum functionality
embedded-system executives (e.g., VRTX [Ready 86]), to communication-based non-
real-time kernels (e.g., V [Cheriton 84]), to full-functionality non-real-time operating
systems (e.g., UNIX).

The "real-time" operating systems of today also vary in the extent to which they sup-
port the needs of real-time programming. For example, things claimed to be real-time
operating systems range from non-real-time systems (e.g., UNIX and V), to non-real-
time systems with "real-time" extensions (e.g., RTU [Henize 86]), to non-real-time
systems with extensions plus kernel enhancements such as preemptability (e.g., MACH
[Accetta 86]), to priority-based "faster-is-better" systems (e.g., VRTX), to static, peri-
odic-based dispatching systems (e.g., SubACS [Wallis 84]), to highly general and adap-
tive real-time operating systems (e.g., Alpha [Northcutt 87]).

4.1.1 Minimalist Systems

To an overwhelmingly large extent, the system software that is referred to as "real-
time operating systems" today is aimed at solving problems at the low end of the spec-
trum of real-time applications. These tend to be minimal-functionality systems, based on

Final Technical Report

Alpha Requirements and Rationale B-23

the assumption of periodic application behavior, they frequently use static priorities to
resolve contention for resources, and make use of low resource utilization in order to
obtain hohow performance "guarantees."

This type of real-time "operating system" is merely vestigial compared with the nor-
mal meaning of the term, and are often more accurately termed "executives." Some such
minimal systems (like those found in current avionics computer systems) are little more
than rate-group dispatchers, and most provide only a library of rudimentary resource
management routines. For the most part, they provide minimal functionality-preferring
instead to pass the time, space, and intellectual complexity burdens of system resource
management on to the application programmer.

These small executives strive to avoid doing anything that would make it difficult for
applications to meet their time constraints, and try to provide service to the clients in a
predictable fashion (primarily with respect to time); they incorporate little more than pri-
ority interrupt handling and context swapping facilities in an attempt to facilitate real-
time responsiveness. The higher levels of functionality are typically left to the users in
the belief that they can implement exactly what they need as a part of the application
software, thus reducing execution time and memory consumption (however, this strategy
frequently backfires).

Minimalist real-time operating systems arose from a historical context when processor
cycles and memory space consumed a far greater proportion of the system's
cost/size/weight/power than they do now. Such simple system software approaches may
be adequate wzi'.h tle pplication software is correspondingly elementary, but the evolu-
tionary trend (even in the area of avionics) is toward rapidly increasing system function-
ality and complexity. The effects of this trend can result in recurring, non-standard, lower
performance attempts by users to perform system (as well as application) resource man-
agement-an especially expensive mistake with distributed systems.

4.1.2 Priority-Based Scheduling

The conventional approach to dealing with timeliness in current real-time systems is
based almost exclusively on one or more of the following functions: static, priority-based
processor scheduling, priority interrupts (typically statically assigned); fast interrupt han-
dling and context swaps; fixed-priority (e.g., rate-group) scheduling, performed based on
a priori, static pre-allocation of resources; and extensive configuration analysis, simula-
tion, testing, and tuning. Notably missing from this list is anything that assists in the
time-driven management of resources. Of all of the techniques used to make a system
be real-time, by far the most common one is priority scheduling.

Instead of dealing directly with the application's time constraints, current real-time
computing systems attempt to map them into artifacts which they (usually implicitly)
imagine to be simpler, but often there are wide-spread detrimental consequences whose
cause is not recognized. The principle forms that these artifacts take are the use of static
priorities and the dependence on strongly periodic applications behavior. Such systems
provide only a priority mechanism for managing processor cycles; the difficult task of mak-
ing the priority assignments is left to the client, and typically requires a great deal of tun-
ing. It is also common to pre-define multiple sets of fixed priority assignments and over-
lay them to meet certain anticipated combinations of changes (or modes) in the system.

Final Technical Report

L-24 Alpha Requirements and Rationale

Attempting to devise appropriate priority assignments for an application's computa-
tions is often an extremely complex and time-consuming effort that is relegated to highly-
experienced specialists, and is (almost necessarily) dealt with in an ad hoc fashion. Fur-
thermore, when changes are made to components of an application constructed using
static priorities, it is frequently the case that the entire process of priority assignment
and testing must be repeated. In addition to these deficiencies, it has been shown that,
in general, fixed priority assignments are incapable of meeting activity deadlines, even
when the computing capacity is far greater than the needs of the activities [Liu 73].

Provided that certain (often rather unrealistic) assumptions are met, some static priori-
ty-based scheduling techniques can be used to meet the time constraints of some types
of real-time applications. For example, the rate-monotonic technique is known to be an
optimal static algorithm with respect to meeting periodic deadlines [Liu 73]. However,
only trivial systems manage to achieve a successful balance between priority responsive-
ness and resource utilization.

The solution to many, but not all, of these deficiencies is to use a dynamic priority
scheme. However, despite the fact that dynamic priority assignments can significantly
out-perform static ones, such techniques are rarely used in actual real-time systems.

4.1.3 Low Utilization

Some real-time systems atempt to guarantee that all of an application's timeliness
requirements are always met. While it would be ideal for a real-time operating system
to provide such timeliness guarantees, current approaches to making them introduce sig-
nificant programming constraints and usually require that the system conform to certain
unrealistically over-simplified assumptions concerning its behavior (e.g., as in
[Leinbaugh 80]). Most efforts in this area focus on providing high resource utilization for
low-level (ie., closed-loop, sampled data) control applications where tasks are deter-
ministically periodic and have no value to the system if their deadlines cannot be met
(i.e., tasks have hard deadlines). The appeal of such approaches is their analytical
tractability, but they are not suitable for more general real-time command and control con-
texts, which are characterized by predominately aperiodic tasks and are less amenable to
such rigid and stylized treatment. In general, it is currently no more practical to make
absolute timeliness guarantees for general, unconstrained real-time systems than it is
practical to prove the correctness of large, complicated programming systems. Recently,
some of the vocal academic proponents of real-time guarantees have begun recognizing
the futility of their position and now speak of "conditional guarantees" [Stankovik 88].

4.2 Distribution
Despite the fact that physically dispersed systems are becoming more wide-spread,

virtually none of them attempts to be globally unified in the previously defined manner.
Most distributed systems are simply networks, or at most federated (dedicated-mis-
sion) systems, functioning as loosely associated collections of autonomous computing
nodes with the ability to interact with each other [Thomas 78, Lampson 81]. In typical
distributed systems, each node manages its local resources independently, and the
client's interface to the system is usually non-location-transparent and non-uniform.

Ideally, the programming of distributed applications should be focused on the intrinsic
issues of logical structure and algorithms, but distributed programming does depend on

Final Technical Report

Alpha Requirements and Rationale B-25

distributed resource management-ie., the management of physically dispersed
resources so as to maintain application correctness, consistency, and performance in the
context of such complexities as: asynchronous (real) concurrency; variable, unknown
communications delays; and multiple independent failure modes. Distributed resource
management in this sense should be the responsibility of the system so that the users
can devote their efforts to the application programming. However, most conventional dis-
tributed operating systems manage system resources locally (i.e., per-node) and only a
few resources (e.g., inter-node communications) are managed globally across the whole
system. Therefore, almost all of the distributed resource management for distributed
applications must be provided by the users, at substantial recurring development costs,
and at similarly high, recurring, performance penalties.

In most distributed systems today, the programmer of distributed applications must
explicitly be aware of, and deal with, the effects of physical distribution (e.g., the physical
locations of software modules, the number of nodes in the system, and current state of
the each node). This is because most conventional "distributed" operating systems are
simply centralized, local operating systems with additional standardized interfaces and
protocols intended for certain forms of resource sharing among separate applications exe-
cuting in a network of autonomous nodes--e.g., shared file access or remote procedure
calls to servers. Usually this sharing of resources is not uniform and transparent to the
applications; the system's clients must access remote resources in a manner much differ-
ent from how local resources are accessed. Furthermore, the interfaces and protocols
which are added to standard operating systems to make them "distributed" are typically
implemented as utilities at the higher layers of the operating system. While this design
decision serves to minimize the impact of distribution on local operating systems, it pro-
vides support for distribution at a higher cost than "native" implementations.

Typical centralized operating systems are extended to be "distributed" by adding a
remote file system, or remote procedure calls between client and server processes. The
resulting system provides a programming model that is inadequate for distributed applica-
tions in that it does not address some of the most fundamental issues in distributed pro-
gramming, leaving them instead to be dealt with at the application level. First, such dis-
tributed systems typically do not provide a strong correspondence between the applica-
tion's viewpoint of a computation which spans multiple nodes and the system's
viewpoint of separate computations on interconnected nodes. To the underlying system,
the components that make up the logical computations in a distributed application pro-
gram are disjoint entities; the system does not see any relationship among them and
therefore must manage system resources without the benefit of knowing about the rela-
tionships that bind them into a common logical computational activity. In addition, it is
incumbent upon the application programmer to transform the structure of his logical com-
putations into components that are supported by the system. The programmer's logical
view of a computation is the only thing that holds these independent components togeth-
er--they all look the same to the system that is managing resources for them.

In addition, the most common type of distributed system does not provide the means for
propagating a logical computation's attributes (e.g., real-time constraints and reliability
needs) along with it, as it progresses through the various components it makes use of in
the course of its execution. This means thai -. yst',..r igoe not , -"a the continuity

Final Technical Report

B-26 Alpha Requirements and Rationale

of the acquired attributes of a logical computational stream as it passes from one module
to the next (regardless of whether it involves crossing node boundaries). This makes it
impossible for the system to maintain the continuity of the information that is associated
with a computation, as opposed to the various components that go into making up each
computation in an application. Because the system does not maintain this continuity, it
cannot manage resources effectively and there is only a limited degree to which an appli-
cation can make up for this deficiency.

Most distributed systems in existence today tend to provide limited, stylized support
for concurrency and synchronization of distributed computations. These systems tend not
to provide support for either concurrency within a (multiprocessor) node, or concurrency
among the nodes in a system. But rather, they provide the type of process management
and interprocess communication facilities that were developed for uniprocessor or net-
work systems. Additionally, the forms of synchronization dictated by these systems
tend to limit the amount of concurrency that can be obtained within a programming mod-
ule. This is typically done because the systems that these structures were developed for
did not have any actual concurrency to exploit, and so restricting concurrency has the ben-
eficial effect of simplifying things for the programmer. If the system restricts concurrency
within a programming module to where only one point of control can be active in it at a
time, the progiammer need not be concerned about synchronization, and can write the
usual form of non-reentrant, straight-line, serial code.

4.3 Robustness
A common technique for attempting to provide robustness in real-time control systems

is through the extensive use of excess assets-i.e., the system is provided with far more
resources than necessary to meet the application's (steady-state) computational
demands in order to ensure that the system's objectives can continue to be met in the
face of failures. These systems rely on a very low level of average system resource uti-
lization in order to achieve their robustness goals.

Most extant systems that address the robustness requirements described in the previ-
ous sections tend to be special-purpose database systems that use low-concurrency,
high-cost consistency maintenance schemes (e.g., atomic transactions), or equally costly
redundancy management techniques (e.g., replication). The use of these techniques has
not been directed towards the area of distributed real-time command and control, and so
little effort has been expended in trying to develop robustness techniques that also meet
the timeliness demands of real-time systems. Frequently (regardless of the specific
techniques used) a system's robustness facilities impose substantial constraints on the
system and application programmers, and furthermore, most of the systems that have
been constructed to explore techniques for reliability emphasize only one aspect of sys-
tem reliability. The reliability facilities in current systems tend to impose fixed costs for
their use, irrespective of whether the client currently needs the system's robustness ser-
vices. Furthermore, the reliability facilities currently being developed are not geared to
meet the special needs of the real-time command and control area, and are therefore not
well integrated with the other facilities required by this application domain.

Regardless of the particular mechanisms used, a common technique for ensuring that a
real-time application exhibits the proper degree of robustness is exhaustive testing.

Final Technical Report

Alpha Requirements and Ranonale B-27

Despite the fact that it is widely known that testing only detects the presence of bugs
and does not ensure the absence of bugs, testing is used to obtain a greater level of confi-
dence in systems (and configurations). As it is currently practiced, the exhaustive test-
ing of real-time systems is a dead-end technology, that is already being pushed to its
limits, and will not hold up to the demands of future systems. As real-time command and
control systems have become more complex, it has become impossible to exhaustively
test them. With larger numbers of processors carrying out larger numbers of tasks, the
combinatorial explosion of paths does not allow simple exhaustive tests to be written
and applied with any degree of confidence that a high degree of coverage can be obtained.
As systems become more dynamic, it is no longer possible to anticipate, with a small
number of load modules, all of the system configurations that may result from subsystem
failures. The testing issue has long acted as a force to keep real-time systems small,
simple, and deterministic. What is c?.lDed fnr is the advancement of the state-of-the-art
in testing (as well as design-for-testability) technology to cope with the advancing
sophistication of the systems instead of using testability as an excuse for constraining
the systems.

4.4 Adaptability
While certain existing systems have emphasized modularity and extensibility in their

designs, they have not been systems of the type that is of interest in this research.
Although some real-time control systems exhibit a significant degree of architectural
modularity (via the use of processing nodes interconnected by high-performance commu-
nication networks [Jensen 78b]), and others provide adaptability at the programming lan-
guage level (via a high-level language such as Ada), there are few examples that have
explicitly attempted to be usefully modular in their system-level design. Likewise, there
are operating systems that provide a high degree of modularity and extensibility at their
interfaces and within their structure, however few of these have been distributed sys-
tems and fewer still have been for real-time command and control.

4.4.1 Dynamic System Behavior

Currently, most real-time systems attempt to make the behavior of the system and
applications as static and deterministic as possible, and attempt to validate the correct-
ness of the system through exhaustive testing [Quirk 85]. A common characteristic of
this type of system is the high cost associated with the addition or modification of system
functionality, and the inability to cope with unanticipated behavior [Pamas 77, Glass 80].

In real-time control environments the value of flexibility has not always been properly
appreciated because the computing system is usually embedded. The pervasive philoso-
phy is that a static system (that is analyzed, configured, tested, tuned, and validated a
priori for as many contingencies as possible) meets all of the needs of real-time applica-
tions, is more dependable, and maximizes performnct with minimum assets. However,
factors now mitigate in favor of greater computer system flexibility than has historically
been available in this environment. Many applications are becoming so sophisticated
that the common static approach is clearly infeasible, and computer hardware technology
advances have diminished the size, weight, and power per unit of performance, as well as
the percentage of system costs represented by computer hardware assets.

Final Technical Report

B-28 Alpha Requirementu and Rationale

4.4.2 Dynamic Time Constraints

The greatest impediment to adaptability in real-time systems results from their
approach to managing time constraints--most take an approach that depends on periodic
behavior of the system to make the problem more manageable, or amenable to analytical
treatment. As outlined in the requirements section of this report, real-time applications
themselves are not necessarily so strongly periodic. While there are many cyclic activi-
ties in real-time systems, the actual time constraints for many types of repetitive-sam-
ple activities can be expected to have a significant degree of variability (e.g., due to the
mechanical tolerances of the physical environment). Even if the application does impose
strictly periodic requirements, there are aspects of the application's implementation and
the underlying system that introduce variance into the system. This periodic-based
approach is not required by real-time applications, it does not adequately address all of
the real-time application problems, and it restricts the flexibility of systems in a number
of different ways.

In particular, the periodic approach does not deal with the variability that accompanies
real systems. Many forms of variability are inherent in any (non-trivial) real-time sys-
tem-e.g., stochastic fluctuations in load and resource! ccntention, mechanical toierances
in sensors and actuators, and faults, errors, and failures of system components. A peri-
odic-based approach attempts to, in an a priori fashion: anticipate certain variabilities
and define away the majority of those that remain; prohibit architectural optimizations
that introduce nondeterminism (such as caches, virtual memory, and direct memory
access channels); design, and provide resources, for the "worst case"; dedicate and pre-
allocate all system (and application) resources; test and tune the system until all cases
tested "work"; and "guarantee" system behavior (i.e., response times). This results in
rigid, brittle structures which must be invested with massive quantities of resources, and
these assumptions must not be violated or else the system will shatter catastrophically
under the pressure of variabilities (e.g., ancient bridges and cathedrals which were rigid
and massive).

Furthermore, a periodic-based approach does not allow the run-time evolution of time
constraints. In periodic-based systems, once the period of a repetitive activity has been
a priori established, tested, tuned, and validated, it must remain fixed despite any run-
time changes that may occur in the application environment. There are many cases
where this is a serious limitation. For example, where the interval between successive
repetitions may evolve dynamically throughout the course of a periodic activity's execu-
tion-sampled-data monitoring/positioning can occur with increasing frequency as a
robotic manipulator approaches an object, a pair of controlled vehicles approach each oth-
er, or a variable gets closer to its limit.

Additionally, the periodic-based approach to real-time system construction does not
deal properly with aperiodic events. In many important real-time environments (such as
real-time command and control) time-critical aperiodic activities are a major factor, and
are the predominant form of time constraint. Conventional periodic-based real-time sys-
tems attempt to force-fit aperiodic activities into their periodic mold---e.g., by providing
excess capacity reserved for aperiodic activities in a background frame, or by providing a
periodic server which multiplexes aperiodic activities. But none of these schemes is
capable of effectively scheduling activity mixes in which a significant percentage are ape-

Final Technical Report

Alpha Requirements and Rationale B.29

riodic activities having time constraints (such as deadlines), or efficiently utilizing
resources.

Both periodic and aperiodic activities fit naturally in an aperiodic-based approach, thus
it is the more general. An aperiodic-based approach provides a more general solution to
the problem of time-driven resource management that does not suffer from the periodic-
based approach's lack of flexibility. With an aperiodic-based approach, periodic activities
can be expressed and handled more generally and directly. For example, sensors can be
read, actuators updated, and displays refreshed at specific time intervals (within a speci-
fied tolerance). Each time interval occurrence can be managed individually (like loop
unrolling) as though it were one more of an unrelated series aperiodic events. Such an
aperiodic-based approach meets the demands of aperiodic events as well as exhibiting
significant advantages in dealing with the elasticity and evolutionary needs of pericdic
activities. While periodic-based approaches are the exclusive focus of both practice and
theory today, the Alpha operating system departs from this historical trend and repre-
sents the first step in the development of the alternate (more promising), aperiodic-
based technology.

Final Technical Report

B-30 Alpha Requirements and Rationale

5 Technical Approach
Alpha was designed to meet requirements defined in the previous chapter, without suf-

fering from the shortcomings of existing systems. This research was directed toward the
synthesis of new concepts to meet the particular needs of the previously defined applica-
tion domain. This required a carefully integrated software/hardware approach, along with
the exploration of the tradeoffs required to implement those concepts effectively. One of
the results of this research was the creation of a set of programming abstractions that are
intrinsically well suited to modular, reliable, decentralized operating systems, and the
design and implementation of a set of kernel-level mechanisms in support of them. Alpha
is not a monocentric system, that features one particular concept over all others, nor is it
a collection of facilities grafted onto an existing operating system. All of the system's
features were designed based on the requirements for the application domain and imple-
mented in concert with each other, resulting in a well-integrated solution within a mean-
ingful framework.

Alpha was designed to be executed on loosely-coupled architectures, with either
uniprocessor or multiprocessor nodes. Additional constraints placed on the implementa-
tion of Alpha include the requirement that the system be able to run on standard, off-the-
shelf processors (i.e., the system cannot be dependent on specialized hardware support
to make its implementation practical), and the requirement that the system's (native)
programming model be similar in concept and implementation to traditional models (i.e.,
the system cannot force its programmer's to learn and adopt a radically different approach
to programming).

Alpha's kernel provides a small, simple set of mechanisms, out of which the higher lev-
els of the system, and the applications, are constructed. These mechanisms permit the
exploration of a wide range of system policies, and provide great flexibility for implement-
ing other programming models.

It should be noted here that the Alpha project is directed towards the development of
operating systems technology and, as such, the emphasis has been on providing a set of
system mechanisms to meet the requirements defined earlier. The intent is that multiple,
differing, programming interfaces can be supported by Alpha, ranging from elaborate dis-
tributed real-time programming environments, to (more or less) standard object-oriented
programming languages, to some standard programming language with direct access to
the native system interface. The implementation work on Alpha has been proceeding bot-
tom-up, with the kernel being complete (and somewhat stable) at present, and there is
currently no object-oriented programming language (standard or otherwise) implemented
on top of the kernel. Instead, the programming experience with Alpha to date has been
performed directly on the kernel interface, using a pre-processor to provide the program-
mer with a set of simple language constructs for programming with the native abstrac-
tions provided by the kernel of Alpha [Shipman 88]. Throughout the remainder of this
report, the programming abstractions and features of Alpha are discussed from the per-
spective of programming the native, kernel interface of the Alpha operating system
(despite the fact that this is not intended to represent the ideal, or only, programming
interface provided by Alpha).

Final Technical Report

Alpha Requiremenu and Rationale B-31

The system's basic programming abstractions were designed explicitly to support the
requirements of timeliness, distribution, robustness, and adaptability. In the following
sections, the basic abstractions provided by Alpha are defined, the means by which
clients of the kernel specify time constraints (i.e., the notion of time-value functions) is
described, and the structure of the system's software and hardware is briefly outlined.

5.1 Basic Abstractions
The Alpha kernel interface presents its clients with a set of simple and uniform pro-

gramming abstractions from which modular, reliable, and distributed real-time control
applications may be constructed. The purpose of a kernel is to provide fundamental
abstractions and mechanisms that support a range of different system interfaces (i.e.,
operating systems and languages, similar to [Habermann 76]), which is not the same as
a trivial operating system or an executive. The Alpha mechanisms are carefully and
deliberately devoid of policy decisions, and are meant to support the exploration of a wide
range of decentralized operating system policies. The interface provided by the kernel is
not (necessarily) intended to be the same interface presented by the operating system to
an application programmer.

Alpha's kernel is based on a small set of basic mechanisms, in the same spirit as those
in Accent [Rashid 81]. The Accent kernel is based on the process and interprocess com-
munication abstractions, while the Alpha kernel is based on the abstractions of objects,
the invocation of operations on objects, and threads. As in Accent, where system calls
are performed by sending messages to processes, all kernel services in Alpha are provid-
ed by the invocation of operations on objects,

The abstractions provided by the kernel of Alpha are based on a combination of the prin-
ciples of object-orientation [Bayer 79], atomic transactions [Bayer 79], replication
[Randell 78], and decentralized real-time control [Jensen 76a].

The general programming paradigm supported by the kernel of the Alpha operating sys-
tem is known as object-oriented programming [Goldberg 83, Cox 86], and the primary
abstractions supported by the kernel are: objects, invocations, and threads. In Alpha,
objects adhere to the common definition of abstract data types and interact with other
objects via the invocation of operations on them. Threads are defined to be the manifes-
tations of control activity (i.e., the units of concurrent computation and scheduling) within
the kernel.

5.1.1 Objects

A wide range of benefits are claimed for the object model of programming, including
increased modularity, the separation of specification from implementation, and the
increased reusability of software components. These claims are accepted as true in the
Alpha project, and a general discussion of the merits of object-oriented programming can
be found in [Cox 86].

In addition to the attributes of modularity, information-hiding, maintainability, etc. nor-
mally associated with an object-oriented programming paradigm, the programming model
described here is especially well suited for the support of decentralized, high-concurrency
implementations of the major robustness techniques supported by Alpha (i.e., atomic
transactions and replication).

Final Technical Report

B-32 Alpha Requirements and Rationale

At the highest level of abstraction, objects in the Alpha kernel are equivalent to
abstract data types--i.e., some encapsulated data along with the code for a set of opera-
tions with which the data is manipulated. Objects are written by the programmer as indi-
vidual modules, composed of the object's data and operations that define its interface
(similar to Ada packages [Ada 83]). An example object is shown, schematically, in Fig-
ure 7, illustrating the data encapsulated by the object and the operations that make up
the object's interface.

Queue Object

Initialize Operation

Insert Opratio

Remove I ai

/Additional

RoutineD

Figure 7: Example Object

Object types are static definitions of the code and the initialized data that go into mak-
ing up an object. Object types are passive entities, defined by the programmers and
maintained within the system object store. Object instances are the executable, run-time
manifestations of objects that are dynamically instantiated from given object types, and
may likewise be dynamically deleted from the system. In the following discussion
(except where explicitly noted otherwise), the term object refers to an instance of a spe-
cific object type.

The basic abstractions of Alpha were developed to meet the system's requirements
and therefore the definition of objects in Alpha differs from the more commonly accepted
definitions. For this reason, the names of the Alpha programming entities were explicitly
chosen to carry as little as possible of the semantic baggage associated exi.,dng object-
oriented programming terminology (e.g., messages, methods, and classes).

In Alpha, objects are simple, passive entities, the main aspects of which are the rigid
encapsulation of state information and clear definition of an interface to the encapsulated
information by a set of operations. To enforce the encapsulation of information, each

Final Technical Report

A4pha Requdrements and Rationale B-33

object in Alpha exists in a separate, hardware enforced address space, and to enforce the
integrity of the interface projected by an object, the kernel ensures that execution within
an object can begin only at entry points specified by the object's exported operations.

In Alpha, objects are defined by the programmer-in-the-small, as well as the program-
mer-in-the-large. Any notion of inheritance is assumed in Alpha to be handled at com-
pile-time; there are no specific features of the kernel's interface that are meant to support
any form of inheritance.

The object model used in Alpha emphasizes a simple and uniform system interface,
minimizing the specialized artifacts that are introduced into the (logical as well as physi-
cal) programming model. Alpha supports a quite uniform system programming mod-
el-everything appears as objects to the programmer. The object abstraction in the
Alpha kernel extends to all system services, and encapsulates all of the system's physi-
cal resources, providing clients with object interfaces to all system-managed resources
(i.e., memory, devices, etc.). This uniform system interface concept allows operations to
be invoked on a wide range of entities, ranging from user or system objects and threads,
kernel routines, and system hardware.

Objects in Alpha may exist only at a single node at a time; however, objects may be
dynamically migrated between nodes. From the kernel's programming perspective,
objects exist in a flat universe-i.e., objects are undistinguished by the operating sys-
tem. Any structure, organization, or discrimination among objects (such as "system"
and "application" objects) is imposed by the programmer, and enforced by the kernel.

The objects in Alpha are expected to be medium to large in size (i.e., on the order of
100-10,000 lines of code). This assumption is derived from some practical considerations
having to do with the distributed nature of Alpha and the overhead associated with both
inter- and intra-node communications (i.e., in order for the system to be practical, the
overhead associated with performing operations must be a small percentage of the cost of
actually performing the function associated with the operation).

5.1.2 Threads
Threads represent loci of execution control that move through objects via operation

invocations. The Alpha thread abstraction is in many ways comparable to the process
abstraction found in many conventional systems. Unlike conventional processes howev-
er, threads move among objects via invocations without regard for the physical node
boundaries of the system.

Figure 8 is a snapshot of an example application running on Alpha, consisting of three
separate threads in the process of moving through four different objects in the course of
performing their computations. Note that the boundaries presented by physical nodes do
not appear in this logical view, and both Threada and Threadb are simultaneously active
in Object3.

In Alpha, objects are passive entities while threads are the run-time manifestations of
concurrent computations in the system--they are the units of activity, concurrency, and
schedulability in Alpha. Threads execute asynchronously with respect to each other,
allowing a high degree of concurrency to be achieved, but necessitating that the kernel
provide a set of concurrency control mechanisms. These mechanisms allow the neces-
sary degree of concurrency control to be applied at a reasonable cost in terms of overall

Final Technical Report

B.34 Alpha Requirements and Rationale

system performance (i.e., the mechanisms perform their functions quickly and their use
does not seriously restrict concurrency in the applications).

Threada Threadb Threadc

Object, Object2 Object3

Figure 8: Example Thread/Object Snapshot

The system does not impose an a priori limitation on the number of threads that can be
executing within an object at any given time. Should concurrency control be required, it is
either up to the system level programming interface or the applications programmer to
apply concurrency control restrictions (either in a brute-force, or application-specific fash-
ion). However, the kernel provides the necessary (basic) concurrency control mecha-
nisms, and once specified, the system will enforce the desired restrictions on the concur-
rent execution of threads. In addition, this approach ensures that the thread concept
extens naturally to the multiprocessor case (i.e., with concurrency within nodes, as well
as among them).

With threads it is possible to implement a wide range of system-level control policies,
ranging from low-concurrency structures (such as monitors) to medium and high concur-
rency ones. The thread abstraction simplifies the task of time management in the kernel
by being a mn-time manifestation of client-defined computations. Threads are also more
efficient than most process- and message-based client/server model implementations,
because each step in the computation does not necessarily involve an interaction with the
system scheduler (for further details, see [Northcutt 88a]).

A significant feature of the Alpha programming abstractions has to do with the combina-
tion of the fact that threads maintain a strong correspondence between the program's
view of a logical computation, and the system's manifestation of these computations.
This feature makes it possible for the client programmer to associate application-specific
attributes with computations.

Threads include the local state information for the computations that threads represent.
This includes attributes related to the nature of the computation (e.g., reliability require-
ments, timeliness constraints, and relative importance) that can be used by the system
to more effectively manage the system's resources. Threads carry their attributes along

Final Technical Report

Alpha Requirements and Rationale B-35

with them as they move through objects (and, transparently, between nodes) in the sys-
tem. A thread's attributes are modified as it executes through objects, typically in a
nested fashion as represented by the thread in Figure 9, which acquires new attributes in
the course of its execution (shown both in snapshot and "straightened-out" form).

Object, Object2 Object.; Object2

Threada

Figure 9: Example of Thread Attribute Nesting

Threads are independent of any specific object, they move among objects, providing ani-
mation for these otherwise passive entities, but bear no special association with any
object in the system. Furthermore, threads can be dynamically created and deleted in the
course of an application's execution. Each time a new concurrent activity is to be per-
formed, a new thread can be created. With Alpha, threads are the form taken by all activ-
ity in the system.

From a conceptual standpoint, the Alpha notions of thread and object cleave the point of
execution control from code and data definitions in the standard process notion. It is
noteworthy that this cleaving of activity from static code/data is true at the implementa-
tion level as well-in Alpha, a thread together with an object is implemented in much the
same fashion as a typical process.

5.1.3 Operation Invocation

The variety of objects found in Alpha interact most naturally through a form of communi-
cation characterized by send/wait interprocess communication. Objects in Alpha there-
fore use a type of Remote Procedure Call (RPC) for the invocation of operations on
objects (as illustrated in Figure 10).

Final Technical Report

B-36 Alpha Requirements and Rationale

Operation, Object,

Tbreada
Object -.. perationj(args)

- ~JThreta

Operation.,_ Object2

Operation,

b)

Mmrada

OP~r~1OflXObject,

Objectj.Operationz(args)
C)

Figure 10: Example Operation Invocation

All interactions with both user and system objects is via the invocation of operations on
Tb.k n^woration invocation mechanism is the fundamental facility on which the

remainder of the Alpha kernel is based (this is analogous to the role that the interprocess
communication facility plays in Accent [Rashid 81]). The operation invocation facility
provides simple, uniform access to all objects, whether local or remote, and provides reli-
able RIPC-like semantics. Each invocation returns a success/failure indication (with error
code for failures) on its completion. The operation invocation facility does much to mask

Final Technical Report

Apha Requirements and Radonale B-37

the undesirable effects of the system's physical distribution (i.e., node failure, message
errors, non-local objects, object migration, etc.), and provides time-driven orphan detec-
tion and elimination.

The invocation of operations on objects is controlled by the kernel through the use of a
system-protected identifier (i.e., a capability). In this way, the ability of objects to
invoke operations on other objects can be restricted to only that set of destination objects
explicitly permitted. Capabilities can be given to objects when they are created, or they
can be passed as parameters of operation invocations. In the kernel, the capability mech-
anism provides basic, defensive protection at a low cc., in terms of performance.

The operation invocation facility was designed tr,, etain as much of the familiar subrou-
tine-call semantics as possible. The operation ixuvocation facility allows the passing of
arguments among objects, with return/value semantics. It is possible to pass simple, or
structured data, as well as capabilities as arguments in operation invocations.

Because of the fact that all of Alpha's system services are provided in the form of
objects, the operation invocation facility subsumes the role of traditional "system calls,"
and it constitutes the single trap entry point into the system.

This form of thread/object interaction has a number of good features, including the fact
that the RPC style of communication used in Alpha tends to be both simpler and more
commonly understood by programmers than more g- era forms of communication (e.g.,
asynchronous message-passing) [Nelson 81]. Also, the use of a synchronous form of
communication in Alpha does not pose the types of limitations that are typically associat-
ed with synchronous communications in process/message-based systems [Liskov 85],
due to the nature of the object and thread abstractions. Furthermore, there was initially
reason to believe that this type of system could be implemented in a way that is suitably
efficient to make possible the construction of meaningful applications programs.

5.2 Time-Value Functions
Alpha uses a novel and highly effective technique for explicitly and expressively mani-

festing an application's time constraints-as the time-dependent value to the system of
completing the computation's activity. The time-driven management of system resources
in Alpha depends on the correspondence between the programmer's and system's view
of application computations (provided by threads), and application-specified importance
and time constraint information (provided by attributes of threads).

The attribute information that is associated with threads in the current implementation
of Alpha include: an indication of the relative importance of the thread, the expected com-
pletion time for the execution of a region of code; the value (with respect to time) to the
system of completing the execution of a section of code; and a probability distribution
function that indicates the probability (with respect to time) of completing a region of
code. These attributes are associated with threads by parameters specified when creat-
ing new threads, and may be modified (at run-time) by invoking operations on the
threads themselves.

Collectively, these attributes are the Alpha system's manifestation of time-value func-
tions, which represent the value to the system of the execution of a computation (or parts
thereof) with respect to time. Time-value functions distinguish between a computation's

Final Technical Report

B-38 Alpha Requirements and Rationale

timeliness and its importance, it is an aperiodic-based, dynamic approach that is both
very powerful and expressive. Time-value functions consist of several different compo-
nents, as illustrated in Figure 11. The concept of time-value functions was invented by
Jensen in 1975 [Jensen 75] and was explored by one of his students working on the
Archons project [Locke 86].

I - thread importance

tc - critical time

te - expected execution time

a(te) - standard deviation of te

Spre - shape of value function, pre-critical time

Spost - shape of value function, post-critical time

,pre - importance modifier, pre-critical time

ipot - importance modifier, post-critical time

0(te)Vi
I
u
e

1(1 + 'pre) T
I (1 - i j o s,) .p r

Timete t

Figure 11: Components of a Time-Value Function

Time-value functions are the basis for resolving all contention for resources in
Alpha--e.g., processor cycles; communication management; secondary storage access;
synchronization resources (e.g., semaphores). The user-specified time-value functions
and the run-time statistics maintained by the system for each thread (such as accumulat-
ed execution time) serve as the fundamental inputs to the time-driven resource manage-
ment policy modules in Alpha.

Final Technical Report

Alpha Requirements and Rationale B.39

The time-driven resource management policies in Alpha all follow the same general set
of guidelines. The time-value functions for all contending activities are evaluated collec-
tively, and then the activities are scheduled so as to maximize the total value to the sys-
tem for the entire time span they cover. The urgency of the computations requesting sys-
tem resources is considered first-when there sufficient resources to do so, all of the
resource requests are serviced in such an order as to ensure that the computations' time
constraints are all met. If there are not enough resources available to satisfy the time
constraints of all contending activities, a "best effort" is made to handle the overload
condition gracefully (as defined by an application-specified policy [Jensen 76a]). For
example, an overload policy might indicate that the system should shed load on the basis
of activity importance, or that it should retard all response time performance proportional-
ly to activity importance. The currently preferred policy in Alpha takes the former-i.e.,
contending requests are selectively denied, on the basis of the urgency and importance of
the computations responsible for the resource requests. Further details on this type of
resource managemeint is given in Subsection 6.1.3 of this report.

While it is true that higher-utilization techniques impose a performance cost of their
own, our studies have shown that in most cases this cost is worth the benefits that it
provides [Locke 86]. In fact, it has been shown that many time constraints may not be
met under conditions of extremely low utilization [Lechovski 84]. The results of these
efforts have illustrated that a large component of the cost can be offset through the use of
hardware currency-i.e., a simple, special-purpose hardware accelerator (analogous to a
floating-point co-processor) The Archons project's analysis, simulation, and experience
indicate that the resources consumed in performing time-value resource management pro-
duce greater value for the system than do the simpler techniques which consume consid-
erably smaller amounts of resources that could otherwise be used by the applications. In
any event, this project is interested in exploring this research direction in an attempt to
develop operating system techniques that will yield both increased system resource uti-
lization and improvements greater than the normal hardware-technology-driven perfor-
mance increases.

5.3 Implementation Features
The following subsections describe the structure of the software and hardware in the

initial implementation of Alpha.

5.3.1 System Software Structure

The Alpha operating system lies in between the application code and the hardware and
(in its current implementation) has an internal (logical) structure as shown in Figure 12.
The bulk of the functionality described in the preceding sections is provided by the kernel
layer, and it is the kernel layer that has received the greatest amount of attention by the
project to date. Future work will be directed towards enhancement of the executive and
system layers. The following provides a brief description of each of the (logical) software
layers in Alpha, including the Application Layer, System Layer, Executive Layer, Kernel
Layer, and Monitor Layer.

The application layer consists of a collection of objects and threads, defined by one or
more applications programmers. These objects and threads execute without any special

Final Technical Report

B-40 Alpha Requirements and Rationale

system privilege (with respect to priorities, access to internals, etc.). The separation of
application-level object address spaces is enforced by the underlying hardware.

The system layer consists of a collection of objects and threads, much as found in the
application layer (i.e., unprivileged with hardware-enforced separation of address
spaces). System-level objects and threads are distinguished from their application-level
counterparts only by their access privileges, as defined by the capabilities that they pos-
sess. Objects in the system layer provide the higher-level operating system ser-
vices--e.g., name, authentication, directory, and reconfiguration servers, as well as user
interface and programming environment support facilities.

Application

IFIPSystemf

I. Executive , mi

• ...:. " .:Kernel i.. . : .- !

Monitor

Figure 12: Logical System Software Structure

The executive layer extends the functionality of the kernel by way of a collection of spe-
cial entities known as kernel objects and kernel threads. These appear to the program-
mer who specifies them as normal objects and threads, but are have special characteris-
tics and are implemented in a different manner. Kernel threads and kernel objects are
optimizations that permit the system-builder to easily migrate a limited number of
threads and objects into the lower layers of the system, primarily for reasons of perfor-
mance. Kernel object types are specified the same as with normal objects, however they
are linked into the system at system-build time and kernel object instances coexist with-
in the kernel's address space. Kernel threads and objects are used to implement system
daemons (e.g., interrupt handlers, virtual memory pager, transaction manager, and
garbage collector). In addition, the executive layer is where the policy modules that gov-
ern the behavior of the local kernel mechanisms reside.

The kernel layer provides the basic system abstractions, upon which the remaining por-
tions of the system are constructed. The kernel consists of:

system service objects-i.e., routines that provide services to the client by way
of object interfaces (e.g., object and thread managers, and semaphore and lock
managers)

Final Technical Report

Alpha Requiremenu and Rationale B-41

* hardware supported kernel subsystems-e., collections of routines that collec-
tively provide a major internal system facility (e.g., virtual memory, scheduling,
communications, and secondary storage)

" the kernel proper-i.e., routines the provide the bulk of the kernel's basic func-
tionality (e.g., operation invocation, trap handling, subsystem interfaces, and
physical memory and I/O management)

The monitor layer consists of software that exists within each of the processor's on-
bowrd PROM storage. Included in the functions provided by the monitor layer is: low-lev-
el I/O support (including the "printfo" routine); TFTP-based boot, upload, and download
support; power-on reset initialization and diagnostics; and low-level debugging support.

5.3.2 Testbed Architecture

The Alpha operating system executes on a loosely-coupled collection of dedicated-
function multiprocessor nodes, constructed from largely off-the-shelf system components
(i.e., the Alpha Distributed Corm'uter Testbed [Clark 83, Northcutt 88b]). The testhed
supports the development of software by a collection of system programmers, working
from individual (remote) workstations. Furthermore, the nodes of the testbed were
designed to allow the exploration of various operating system concepts that may benefit
from hardware support.

At a high level of abstraction, the testbed consists of three components--the develop-
ment and control system, the distributed computer system, and the application system
(see Figure 13). The development and control system consists of a collection of Sun
Microsystems workstations, running the UNIX operating system, and are connected to
the distributed computer system via both Ethemet and 9600 baud serial lines. This part
of the testbed is used for the development of application programs, the control of applica-
tions runrng on the distributed computer system, and the monitoring of the operating
system as well as application experiments. The software tools that exist on the Sun
Microsystems workstations (editor, compiler, linker, window manager, etc.) provide an
effective development environment, permitting the testing and debugging of low-level
system code by multiple, remote users.

The distributed computer system component of the testbed is the host on which the
Alpha operating system executes. It consists of a collection of processing nodes inter-
connected by a global communications subnetwork. This system is (logically) a single
computer, where the network is analogous to the backplane and the nodes being the
cards of a conventional processor. The distributed computer is partionable into separate
computers, and interfaces with the outside world via a gateway machine (i.e., a standard
Sun Workstation running UNIX).

The application system is comprised of a set of application devices, and is the interface
between the distributed computer on which the Alpha kernel executes, and the physical
system it is controlling. Application devices can be sources of data to the computer (e.g.,
sensors) or data sinks (e.g., actuators), and can be a combination of actual or simulated
devices. The application system interfaces to the distributed computer system directly
through nodes, the network, or gateway machines. Details concerning the Alpha Dis-
tributed Computer Testbed can be found in [Northcutt 88b].

Final Technical Report

B-42 Alpha Requirements and Rationale

Development and Control System

Distributed Computer System

Application System

Figure 13: Testhed System Structure

Final Technical Report

Alpha Requirements and Rationale B-43

6 Rationale
The following provides an overview of how each of the major issues associated with

distributed real-time control systems is addressed by Alpha's kernel mechanisms devel-
oped as part of this work.

6.1 Timeliness
Because of the importance of timeliness issues, much attention has been given to con-

siderations of time in the specification, design, and implementation of the mechanisms
that make up the Alpha kernel. Most of the common techniques for meeting the (simpler)
requirements of real-time systems have been applied in the design and implementation of
the Alpha operating system. In addition, each of the facilities in Alpha was specifically
designed to help meet the requirements of real-time applications. The general approach
to timeliness taken in Alpha is highly adaptive, permits high utilization of system
resources, and addresses the problems of timeliness head-on, without making unrealistic
or limiting assumptions about periodicity or determinism.

The most visible manifestations of the concern for timeliness in the design and imple-
mentation of Alpha are: time-driven resource management, and the use of application-
specified time constraints and resource management policies. As defined earlier, the
aspect of an tperating system design that is most responsible for meeting the needs of
real-time api-lications is the manner in which contention for system retsources is
resolved; re&m-time operating systems should take into account timeliness constrahits
when resolving contention for resources. A guiding principle in the design of Alpha was
that all resource management decisions should be made based on the time constraints of
the entity making the request for system resources, and when all of the requests cannot
be met in a timely fashion, an application-specific overload handling policy -z followed in
dealing with the requests. To this end, the thread abstraction was developed to provide
the framework within which global, time-driven resource management can be performed.

An implication of the use of time-driven resource management in Alpha is that the
client must provide the system with a policy for managing its resources (both in normal
and overload cases-i.e., when there are insufficient resources to meet the application's
needs). In addition, the client must provide the system with the information needed to
manage each of the application's time-critical computations (e.g., the timeliness con-
straints and relative importance of each computation). The Alpha operating system was
designed to allow the system's clients to provide custom resource management policies
(e.g., for application processor scheduling and virtual memory paging), and to allow the
simple and natural expression of application-specific time constraints (by associating
timeliness attributes with threads).

The influence that the requirements of real-time programming had on the design and
implementation of Alpha is evident in the system's basic abstractions, programming
interface, kernel subsystems, and kernel mechanisms.

6.1.1 Effects on the Basic Abstractions

The Alpha fundamental programming abstractions were specifically designed to support
the overall objective of global, dynamic, tune-driven resolution of contention for system

Final Technical Report

B-44 Alpha Requirements and Rationale

resources (e.g., processor cycles, communication bandwidth, memory space, or secondary
storage). In particular, the thread abstraction provides a framework for injecting the
application's time constraints into the system, and a basis upon which application-specif-
ic system resource management policies can be defined.

6.1.1.1 The Thread/Object Approach

Threads maintain a direct association between the programmer's logical view of each
concurrent stream of execution that makes up an application, and the system's physical
manifestation of these logical computations. Thus, threads provide a direct means for
associating the timeliness requirements that clients specify for their computations, with
the specific, location-transparent, run-time entities that the kernel manages. In this
manner, global importance and urgency characteristics of computations can be propagated
throughout the system and used in resolving contention for system resources according
to client-defined policies.

In Alpha, all requests for system resources can be associated with the computation
that made each request, and the system uses these attributes to service the requests
according to the application-specified management policy for that resource. For example,
the current scheduling policy in Alpha sequences the execution of threads in such a fash-
ion as to allow all of the threads' specified time constraints to be met (whenever possi-
ble), using the (tine-varying) urgency and importance attributes of threads that are
ready to run.

The thread abstraction in Alpha was not designed to meet the requirements of timeli-
ness in isolation, but the requirements of distribution, robustness, and adaptability were
also considered in the design. Threads provide a unified means of managing all resources
in the system--both within and among the processing nodes in the distributed system.
The application-specified timeliness attributes of computations are carried with threads
as they move through objects and across the system's nodes. This allows a globally con-
sistent form of distributed resource management to be provided through a form of implicit
coordination (i.e., at each node, the same resource management policies are applied to
the threads' global attribute information).

The Alpha thread/object abstractions are better suited for meeting the needs of dis-
tributed real-time control systems than the conventional process/message abstraction.
The main reason for this is that the Alpha thread/object abstraction maintains a strong
correspondence between the logical and physical views of computations, while typical
process/message-based systems do not maintain such a strong relationship. This close
association in Alpha allows requests for system resources to be tied to the logical com-
putations (that the programmer associated attributes, such as time constraints, with) to
allow the time-driven management of resources.

6.1.1.2 Comparisons to Traditional Approaches

To illustrate some of the significant differences between Alpha and traditional pro-
cess/message-based systems, consider a simplified application consisting of three sepa-
rate computations, each of which has a portion in common with the others (i.e., they make
use of some common service, or they perform the same sequence of instructions). In
most systems, the functionality of an application is decomposed into software modules

Final Technical Report

Alpha Requirements and Rationale B-45

for reasons of intellectual manageability, reusability, relocatability, and concurrency. In
the process/message approach, the software modules that are combined to make up com-
putations are known as processes, while in Alpha, the programming modules that define
compuutions are known as objects. In a normal process/message-based system, these
logical computa.ions are mapped onto collections of processes that interact by message
exchanges, while -n Alpha each computation is defined by a thread that moves among a
set of objects via oueration invocation.

Figure 14 illust ttes a stylized process/message-based implementation of this exam-
ple application, where processes 1, 2, and 3 obtain the service provided by process x
through the exchange of messages. Figure 15 provides an illustration of the same appli-
cation implemented in Alpha, where threads a, b, and c begin executicrn in objects i, j, and
k (respectively), and obtain the service provided by object x by invoking operations on it.

A number of significant differences exist between these two approaches. For example,
in the process/message case Lhere is a discontinuity between the programmer's logical
concept of three application computations, and the four interacting processes that the sys-
tem supports in its implementation. This discontinuity requires that the programmer per-
form a transformational step in going from the application's conceptual design to its real-
ization (while the transformation is not significant in this example, it can be quite signifi-
cant for less trivial applications). Furthermore, the discontinuity between the application
programmer's and system's views of computations interferes with the system's ability
to perform global time-driven resource management. To illustrate this point, note that in
Figure 14, each computation is being performed by the cooperative interaction among a
pair of (as far as the system is concreed) independent processes, and (as is typical for
such systems) each process is scheduled based on its own, static, priority. In this case,
the system manages resources based only on the requests it receives from individual pro-
cesses, and not based on Lhe characteristics or requirements of the logical computations.
The result of this is that process x executes at its given priority level, regardless of on
who's behalf it is performing its function, so the portion of the first computation being pro-
vided by process x is executed at too low a level of priority, and similarly part of third
computation runs at a higher level of priority than it should. This example, and various
schemes that have been developed to help processes deal with these problems (e.g., pri-
ority propagation) are dealt with in Chapter 6.

In Alpha, each thread represents an individual computation and moves among objects
independently, carrying with it the attributes assigned to the computation by the applica-
tion programmer. This approach maps the logical computation directly onto its system
manifestation and allows the system to receive resource requests from the computations
themselves and not some unrelated artifact. The result of this is that in each of the
threads in Figure 15 execute in their proper order (based on their application-specified
urgency and importance attributes), regardless of the object they happen to be executing
in at a given time. In effect, the server's function is performed, not only with the
attributes of the individual computation requesting the service, but actually by the compu-
tation itself.

An additional benefit of the Alpha thread/object abstractions is that they admit of an
implementation that does not involve unnecessary scheduler interactions on each
instance of inter-module communication. In typical process/message-based systems,
communication and scheduling activities are intertwined in an undesirable fashion-

Final Technical Report

B-46 Alpha Requirements and Rationale

Process Prinority

Client Process 1 1 High

2 Medium

3 LOW

Client Process2 Server Processx

Client Process 3

0/

Figure 14: Typical Process/Message Interactions

Final Technical Report

Alpha Requirements and Rationale B-47

Thread Urgency/

Threada ObetImportance
Objct 1 a High

b Medium

c LOW

Threadb Object1 Objectx

Threadc
Object k

Figure 15: Typical Thread/Object Interactions

Final Technical Report

B-48 Alpha Requirements and Rationale

to accomplish the next (logical) phase of a computation requires a scheduling activity.
This is an artifact of the process/message approach, because commanications itself is not
a scheduling event. When the system's scheduler has determined that a computation
should receive processor cycles, the computation should retain the processor until a legit-
imate scheduling event occurs, and not relinquish the processor whenever it wishes to
execute another part of the computation. This problem is intrinsic to these styles of pro-
gramming-in the Alpha version of the example, there is a single schedulable entity for
each computation (i.e., the threads), while in the process/message example there are
multiple schedulable entities involved (i.e., the processes).

While the emphasis in this example was on the management of processor cycles (i.e.,
scheduling), the Alpha programming abstractions allow for similar time-driven manage-
ment of any I/O, communications, or memory resources required by the computations. In
most process/message-based systems the management of these resources interact in an
arbitrary (and largely uncontrollable) fashion. Alpha threads provide a unifying means of
managing system resources in a consistent fashion both within and among the system's
nodes.

6.1.2 Effects on the Programming Interface

The Alpha system's timeliness requirements have had a very dramatic effect on the
system's programming interface (i.e., the interface that the kernel provides to its
clients). In particular, the use of time-driven resource management demands that the
programmer be able to provide the system with the information needed to carry out the
desired resource management policy. Furthermore, the very fact that time constraint
attributes may be specified for computations implies a need for the programmer to be able
to deal with the effects of missing hard deadlines (i.e., time constraints that define a time
after which the computation no longer has positive value to the system).

6.1.2.1 Specifying Timeliness Attributes

The Alpha progra=miing interface supports the notion of time constraint blocks, that
provide a convenient way for the programmer to define time constraints for the execution
of specific regions of code within objects. Time constraint blocks allow the programmer to
associate dynamic time constraints with blocks of code by, in effect, placing brackets
around a region of code. Alpha supports the application of multiple, nested time con-
straints to threads, where all of the time constraint blocks in which a thread is active
apply at all times (i.e., a nested constraint does not invalidate those enclosing it).

Alpha provides the programmer with flexibility in determining the binding time for the
parameters of time constraint blocks. For example, the time constraint block parameters
may be defined at compile time (i.e., early binding), or they may be defined whenever a
thread enters the defined block of code (i.e., late binding). Early binding is useful where
it is desired that the code enclosed by a time constraint block must be executed by a cer-
tain (constant) time, regardless of which thread is executing the instructions (e.g., when
the combination of reading a sensor and moving an actuator must be performed within a
certain amount of time). Late binding is useful where a block of code has a time con-
straint, but exactly what the constraint is must be computed each time before entering
the block (e.g., when the time required to complete a testing operation is dependent on
the velocity of a sample past a sensor). Furthermore, ihere are different types of late bin-

Final Technical Report

Alpha Requiremens and Rationale B-49

ding that can be performed. The parameters for a time constraint block may be a fLnction
of the global state of the object alone, in which case the timeliness constraint would be
the same for any thread executing the time constraint block. Alternatively, the time con-
straint block parameters may be a function of the local state of a thread (i.e., stack vari-
ables or incoming parameters), in which case the timeliness constraint for the block of
code could vary with the thread executing within it. This flexibility allows the program-
mer to more dynamically and accurately represent the timeliness needs of his computa-
tion to the system, thereby making it possible for the system to manage its resources
more effectively.

6.1.2.2 Handling Expired Time Constraints

When a thread's time-value function is no longer positive (i.e., the thread has failed to
complete the execution of a time constraint block within the specified amount of time), the
thread's execution within the time constraint block should be terminated. This is
because the thread's time constraint cannot be met, its continued execution and con-
sumption of resources interferes with the successful meeting of other threads' time con-
straints, and the work that the thread continues to do represents more effort that must be
expended to compensate/undo to make the object consistent

The fact that there may be considerable negative value to the application of the contin-
ued execution of threads whose time constraints cannot be met demands that the system
must put a stop to the execution of such threads in a prompt fashion. Simply halting a
thread when its time constraint has been missed is a totally unacceptable solution-in a
real-time system, missing time constraints is as much a part of life as defining and meet-
ing time constraints. A much more meaningful action to take when a time constraint
expires (e.g., a deadline is missed) is to redirect the execution of a thread to an exception
handler specified by the programmer, where the programmer can define what should be
done. The programmer might want to perform one or more of these actions: kill the
thread, put the object back into a consistent state, report an exception to another object,
compensate for the partial execution of the block, retry the block, log an event, or just pro-
ceed on.

Alpha supports the clean-up of computations which fail to satisfy their time constraints,
to avoid wasting resources and executing improperly timed actions This is done by
immediately and forcibly diverting the normal flow of the thread's control to a defiied
exception handling block of code (as illustrated in Figure 16). By providing the program-
mer with a way of going to a defined point in his code on exception with all of the state
information of the computation, a wide range of user-definable exception handling policies
can be implemented. This is to say, a time constraint block has a single entry point, but
has two exit points--one for normal exits (i.e., the necessary computation was complet-
ed before the specified time), and one for abnormal exits (i.e., an abort induced when it
become, known to the system that the computation cannot be completed in the required
time). A thread exits a time constraint block for one of three reasons: the thread has
completed executing the code (and is exiting normally); the thread was aborted pursuant
to a resource marzenient decision by the scheduler (e.g., a missed time constraint); the
thread was aborted for some other reason (e.g., it was in an atomic transaction that has
been aborted).

Final Technical Report

B-50 Alpha Requirements and Rationale

A time constraint is valid as long as the thread is executing code within a time con-
straint block. This implies that once a thread's execution is directed to a time constraint
block's abort code, the block's time constraint is no longer in effect and the thread
assumes attributes of its next outermost time constraint block. In this way, all execution
of exception handling code is done under the proper computational attributes (i.e., the
system pops to the next level of time constraints so that the thread's attributes properly
correspond to the thread's new state). This means that the system contins to manage
resources in the desired fashion, regardless of expired time constraints. The manner in
which exceptions are handled by time constraint blocks is largely the same way that
block-structured, nested, mechanisms are used for handling other types of exceptions in
the system (e.g., atomic transactions).

The kernel can also indicate, at run-time, the probabilities of successfully meeting a giv-
en time constraint. This feature provides an early indication of an exception and permits
the application to determine the proper course of action for each individual case.

Final Technical Report

Alpha Requiremens and Rationale B-51

P An Arbitrary Object Type Specification /
OBJECT ObLAO (

P the object's first operation °/

OPERATION Opr_l (parms)
/* start of the operation's code °

/* enter this operation's first time constraint block /
TIMECONSTRAINTBLOCK(parml, parm2, parm3) {

P" start of code that is to be executed under this time constraint °/

Pan arbitrary conditional statement /
If (condition)

/* enter a nested time constraint block °/
TIMECONSTRAINTBLOCK(parml, parm2, parm3)

/* code to be executed under the nested time constraint 7

ONABORT {
P code to be executed if the time constraint is missed 7

P end of the nested time constraint block *J

else(

)/ end of the first time constraint block */

r enter this operation's next time constraint block 7
TIMECONSTRAINT_BLOCK(parml, parm2, parm3)

/* start of code that is to be executed under this time constraint 7

}/ end of the first time constraint block */

/ end of the first operation */

/* end of the object /

Figure 16: Example Use of Time Constraint Blocks

6.1.3 Effects on the Kernel Subsystems

Each of the major kernel subsystems (i.e., the scheduling subsystem, the communica-
tions subsystem, and the storage management subsystem) was affected by the system's
timeliness requirements. The following paragraphs give an overview of the major effects
that timeliness had on the design and implementation each of the subsystems.

Final Technical Report

B-52 Alpha Requirements and Rationale

6.1.3.1 Scheduling Subsystem

The primary system resource that any operating system manages is application proces-
sor cycles, and in Alpha this resource is managed by what is known as the scheduling
subsystem. The subsystem was designed and implemented to support: a wide range of
different scheduling policies, the management of multiple applications processors, and the
computation of schedules concurrently with respect to the execution of application code.
In the current implementation, the scheduling subsystem executes on a separate process-
ing element within a node, and interacts with the kernel proper (executing on an applica-
tions processor) via the kernel's inter-processor message-passing mechanism. In
Alpha, per-node scheduling is done at the kernel level, while global scheduling is per-
formed at the system level.

The scheduling subsystem on each node maintains information on the time constraints
of all threads currently active on that node, as well as their current state with respect to
those constraints (e.g., the thread's accumulated execution time, whether the thread is
blocked, and what system resources the thread has acquired the use of). The scheduling
subsystem on a node generates a new thread execution ordering (i.e., schedule) on each
scheduling event, and causes an applications processor to perform a context swap and
dispatch a new thread when the currently executing thread is no longer at the top of the
schedule. Scheduling events occur when a thread: is created/destroyed, unblocks, blocks,
is run, is preempted, changes importance, enters/exits a time constraint block, handles an
exception.

While many different types of scheduling algorithms may be (and have been) inserted
into the framework provided by the scheduling subsystem, the algorithm that has
received the greatest amount of use and attention to date is known as the best effort
scheduling policy. The best effort scheduling algorithm is an outgrowth of the Archons
project's long-standing research efforts in real-time scheduling and 4,, use in Alpha rep-
resents the first practical application of our research work in thi. Qr,-a. The best-effort
policy takes application-specified information concerning the timeliness constraints of
applications (i.e., the threads' attribute information), and attempts to meet all the appli-
cation's time constraints, adapting to unexpected events. When the demands for proces-
sor cycles exceed the available supply (i.e., not all time constraints can be met), the best-
effort policy discards requests (i.e., omits ready threads from the scheduling list) in such
a fashion as to maximize the expected value to the system of the threads that are being
scheduled for execution.

The best-effort policy includes a particular overload handling sub-policy, however
examples of other overload sub-policies include: discarding the least important threads
from the set of ready threads; discarding threads to maximize the total number of threads
whose time constraints are met; not discarding any threads, but instead have all threads
be tardy by some average amount of time (i.e., distributed the overload evenly across all
ready threads); or do not discard threads, but have the ready threads be tardy by an
amount inversely proportional to their value to the system.

It should be noted here that the best-effort scheduler implemerized in Alpha can be
made to behave like a rarge of different schedulers, depending on the amount and type of
information given to it by the application programs. For example, with the thread's criti-
cal time parameter alone, the best-effort scheduler can behave like a deadline or a rate

Final Technical Report

Alpha Requirements and Rationale B-53

monotonic scheduler. When given the expected execution time parameter alone, the
best-effort scheduler behaves like a shortest-processing-time-first scheduler. With noth-
ing but the thread's importance parameter, the best effort scheduler degenerates to a pri-
ority scheduler. Finally, without any of the thread's scheduling attributes at all, the best-
effort scheduler runs threads like a round-robin scheduler.

With the full information provided by the applications programs with time-value func-
tions, the best-effort scheduler can manage applications processor cycles much more
effectively than can other scheduling algorithms. Time value functions effectively distv--
guish between the urgency and importance of a computation, whereas these attributes
are most commonly encoded into a simple, small-integer priority code in existing sys-
tems Also, the combination of time-value functions and threads allows a direct expres-
sion of an applhiation program's time constraints, with no translation or transformation
required between the specification of an application computation's timeliness require-
ments and the computation's physical implementaition. Time-value functions are a versa-
tile representation that can uniformly (i.t.., without special cases or exceptions to the
model) express many different types of timeliness constraints, including: hard deadlines,
soft time constraints, hard or soft execution time windows, and delayed eecution.
Because time-value functions can be specified dynamically (and the time constraint
parameters may be run-time variables), a time constraint applied to a particular section
of code can, over time, exhibit a varying degree of "hardness" (i.e., the value of continued
execution following the computation's critical time may change) and a dynamic maximum
value (i.e., the global value to the system of completing the computation may change with
respect to time).

Other, more typical, scheduling algorithms do not attempt to deal with overload condi-
tions properly (in fact, some policies, such as deadline, exhibit particularly bad perfor-
mance in overload cases). In recognition of the system's robustness requirements, the
best-effort policy was designed to handle overload conditions gracefully, attempting at all
times to maximize the global value (as defined by the application) of the execution of
computations to the system.

The best-effort algorithm in Alpha was designed from an aperiodic point of view, in that
no special case treatment is given to events that occur cyclically. Many real-time sched-
ulers use the cyclic nature of some applications to obtain analytical leverage in making
specious claims of "guarantees," and aperiodic events are force-fit into the periodic
mold. Alpha makes use of a more general solution where time constraints are considered
in a uniform manner, and no special significance is given to an event that may happen to
recur in a more or less regular time pattern. Cyclic events are "unrolled," with each iter-
ation treated as a independent instance of a time constraint applied to a section of code.
This allows periodic and aperiodic activities to be handled in an integrated, uniform man-
ner and yields a highly adaptive scheduling subsystem. With the best-effort scheduler,
the system does not fall apart when an assumption concerning the periodicity of events is
violated, nor does it require a reevaluation of all of an application's timeliness constraints
when a change is made in one section of code.

Furthermore, in Alpha there is no premature binding of timeliness attributes that would
restrict the ability of the system to carry out certain policies or its ability to adapt to
events that might occur between the time that the binding is done and when the system

Final Technical Report

B.54 Alpha Requirements and Rationale

makes resource management decisions. For example, the timeliness attributes are main-
tamed with threads in their "raw" form and are not transformed into some compressed
form such as priorities, meaning that there is no loss of information due to transforma-
tions of timeliness attributes by the system. Furthermore, because the timeliness
attributes of threads can be dynamically modified throughout the course of its computa-
tion, the system can be more adaptive than those which statically define time constraints
for computations.

The best-effort scheduler allows the Alpha system to be employed in a more conven-
tional manner that guarantees real-time constraints can be met for low-level static appli-
cations (e.g., rate-monotonic or rate-group scheduling). However, Alpha's best-effort
scheduler has significantly greater capabilities for more general real-time command and
control applications than is available in typical real-time schedulers.

6.1.3.2 Communications Subsystem
The demands of timeliness are also reflected in the design and implementation of the

Alpha communications subsystem. This subsystem manages the resources associated
with the communications between nodes in the distributed computer system, including
interconnection bandwidth and the processing cycles and memory associated with the
communications activity. These resources can be managed in the same fashion as the
scheduler uses to manage application processor cycles-i.e., trace each request to a
thread and use its attributes to help meet the desired time constraints and to resolve con-
flicts when contention for resources occurs. In this way, the communications resources
can be managed in the same fashion as all others, using the same information and the
same policies.

The current testbed hardware does not include an interconnection network that uses a
priority-based bus arbitration scheme. However, if such a bus were used, this notion
could carry the desired resource management policy all the way down to the bus-arbitra-
tion level. For example, the time-value information is used to provide the most important
activity on each node with access to the bus, the bus arbiter could then be used to allow
the most important activity across all of the nodes to use bus nextt.

6.1.3.3 Storage Management Subsystem

The storage management subsystem also reflects the timeliness requirements in the
manner in which it manages the system's secondary storage and virtual memory
resources. The storage management system makes use of the attributes of the threads
that are responsible for storage resource requests--e.g., page-in requests, physical
memory page allocation requests, and write page to stable storage requests.

The storage management subsystem also maintains the n-time statistics that are
required to determine the working set of pages needed by each thread executing within a
particular ob':ct. The storage management subsystem uses the client-specified
attributes of threads in conjunction with its own mn-time statistics to manage storage

tNote that this is only an issue when it is necessary to obtain extremely high utilization from the bus and the

non-preemptable period of bus usage is signrficantl , larger than that which is typical of the computing speed
versus communication speed ratios that exist in products today.

Final Technical Report

Alpha Requirements and Rationale B-55

resources (i.e., virtual memory, primary memory, and secondary storage) according to a
given policy, just as the scheduling subsystem does for application processor cycles. For
example, the virtual memory policies can use application-specific information about indi-
vidual threads to do pre-paging and page victimization in a timely fashion--e.g., do not
victimize pages needed by threads with short deadlines, order the servicing of pre-paging
requests based on the time constraints of the requesting threads, and order the disk read
and write request queues based on the time constraints of the threads associated with
the blocks being read and written.

6.1.4 Effects on the Kernel Mechanisms

The design and implementation of the Alpha kernel's mechanisms provide further sup-
port of real-time applications. For example, the synchronization primitives are designed
to consider timeliness constraints in their function; each time a thread performs a syn-
chronization operation (i.e., manipulates a semaphore or a lock), the scheduler is noti-
fied. When the time comes to unblock a thread waiting for a synchronization token (e.g.,
when a V operation is done on a semaphore, or when a lock is released), the timeliness
attributes of each of the blocked threads is considered and the thread with the most
demanding time constraint is chosen. Furthermere, the timeliness attributes of all of the
threads waiting for a synchronization token held by a thread is considered by the kernel
when determining when a thread should be preempted. In some cases, it is desirable to
allow a thread with less stringent timing constraints to execute before one with tighter
constraints in order to allow free up a thread with even greater urgency that is waiting for
.i synchronization token to be released (for examples of this, see [Northcutt 88a]).

The Alpha operating system was designed so that the execution of threads can be pre-
empted while they are executing within the kernel. This is as opposed to the case in
some operating systems (e.g., UNIX) that disable preemption within the kernel. This is
done to reduce the amount and complexity of synchronization required by the system to
maintain the consistency of its internal data structures. However, an application typically
spends 40%-50% of its time executing within the operating system's kernel, and so a
system's responsiveness to the dynamics of real-time applications suffers if preemption
is not permitted while a computation's point of control is within the kernel.

Another example of the influence that the system's timeliness requirements had on the
design and implementation of Alpha is that (to the greatest extent possible) all system
activities are implemented with threads. This was done because of the observation that
there are many activities in typical operating systems that fall outside the realm of nor-
mal, client computations, and as such are not governed by the system's normal resource
management policies. For example, interrupts, DMA-type activities, and (hardware)
exception handling are all activities that consume (or "steal") system resources (e.g.,
processor cycles, memory, and I/O bandwidth), but are usually not managed by the oper-
ating system. By converting all such activities into threads (e.g., all interrupts are con-
verted almost instantly into threads-buffer data, reset device, and unblock a thread), the
system can manage more of its resources according to their given time constraints, in a
uniform and globally consistent fashion, according to the application-defined policy.

In addition, the Alpha kernel mechanisms were designed and implemented so as to
ensure that they will not require highly variable or unbounded amounts of time to corn-

Final Technical Report

B-56 Alpha Requirements and Ratonale

plete their functions. This is meant to enhance the predictability of behavior, as is fre-
quently desired of real-time systems. Another aspect of this is manifest in the applica-
tion of optimizations that were directed towards the exception rather than the normal cas-
es (examples of which are provided in the following sections).

6.2 Distribution
One of the basic assumptions for Alpha was that it would execute on a physically dis-

tributed computing system, for reasons of both robustness and performance. A distribut-
ed system can provide concurrency of execution among (as well as within) its constituent
nodes, and the bottlenecks of traditional centralized systems can be avoided. Distributed
computer systems mirror the physical distribution of real-time command and control
applications by placing processing elements in near proximity to the sources and sinks of
application information. This results in a reduction in communications delays between
processing and data source/sink sites, and allows the specialization of processing nodes
for increased overall system cost-effectiveness. Physical distribution of a computing sys-
tem can also improve its survivability by providing independent failure modes, greater
isolation of faults/damage, and improved support for graceful degradation of function and
dynamic reconfiguration.

To obtain the benefits offered by distributed systems, a number of additional functions
must be performed and additional features must be dealt with that either did not exist in
centralized systems or could be safely ignored. Either the system software or the appli-
cation programmer must perform inter-node resource management and deal with the
effects of physical distribution. Should this be done by the application programmer, the
effort is recurring, possibly non-standard, and frequently non-expertly implemented. It is
furthermore difficuit, or impossible, to coordinate the resource management functions per-
formed by the clients with that (largely local functionality) provided by the underlying
system software.

The Alpha operating system deals explicitly with the effects of distribution by means of
a facility for efficiently providing reliable, physical-location-transparent communication at
a low level in the system--i.e., the operation invocation facility. The operation invocation
facility is the primary kernel service upon which all other abstractions depend. By making
the invocation of operations on objects reliable and location-transparent, the effects of
physical distribution are reduced, in effect, to the semantics of procedure calls that retum
an indication of the success or failure of the invoked operation. Furthermore, by having
all objects (and even mechanisms within the kernel) use the invocation mechanism, it is
possible to enforce a uniform access method to all system resources, regardless of their
actual location within the system. System resources can therefore be managed and
accessed uniformly regardless of their physical location.

The operation invocation facility represents the single focal point of all interactions
among objects, as well as between objects and the kernel. This provides a convenient
point where system access control and data format translation functions can be per-
formed. Alpha has attempted to eliminate any alternate communications channels (such
as shared memory) that might be used by programmers and would inhibit the system's
ability to perform dynamic reconfiguration. Also, the fidl visibility of all instances of inter-
object communication makes possible a number of system resource management opti-
mizations that make use of object/thread interaction patterns.

Final Technical Report

Alpia Reqlirements and Ratonale B.57

The kernel provides mechanisms to permit the programmer to deal with node and com-
munications network failures (i.e., the operation invocation facility), and to dynamically
(and transparently) migrate objects among nodes. In addition to the operatior invocation
facility, many of the Alpha operating system's other mechanisms are designed to cope
with the effects of the system's physical distribution.

The Alpha system abstractions do not directly reflect the (significant) performance dif-
ferences in interactions between objects co-loca:.- on a node, and objects oi, different
nodes. Whereas some operating systems introduce sub/super-structure abstractions
that recognize and exploit the differences between local and remote objects, in Alpha the
intent was to maintain a uniform programming abstraction that projects to the program-
mer an image of a (logically) centralized system. Should additional structure among the
programming entities be desired, it can be applied at the system or applications level.
This approach was taken with the desire that the system software abstract away the
undesirable aspects of physical distribution, and the ker.,el-provided programming
abstractions maintain a strong relationship to their implementation. In some systems,
there are sub-computaional entities that are a part of the programmer's abstractions but
are not visible to the underlying system software. This approach suffers from the fact
that there is a loss of correspondence between the logical and physical aspects of compu-
tations; the system manages a single entity, which encompasses more than one of the
programmer's computations. In such cases, the programmer's individual computations
cannot be independently relocated across the distributed system at run-time. A further
implication of an approach where the programmers' abstractions differ from their system
implementation is that the system is unable to distinguish among the requests for
resources it receives and so it cannot perform its management functions effectively (e.g.,
when one sub-entity generates a page-fault, all of the related entities are blocked).

6.3 Robustness

For" the purposes of this work, a commonly used distributed system failure model was
adopted [Anderson 81]: the types of failures considered here are the failures of both hard-
ware and software components, in both the system and application domains, including
both transient and hard and clean failures.

The robustness techniques employed in Alpha are supported primarily by kernel mecha-
nisms that provide a client interface at which failures in the underlying system are
abstracted into a set of well-defined, predictable behaviors. In particular, the following
robustness issues are addressed:

• consistent behavior of actions-provided by mechanisms that support
(independently) the attributes associated with atomic transactions (i.e., atomici-
ty, permanence, and serializability). These attributes are provided in the form of
individual mechanisms in order to provide a range of levels of service at a range
of costs, allowing applications to pay only for the amount and type " reliability
needed.

" availability of services--provided by mechanisms that allow objects to be
replicated and manage the different types of interactions defined on those repli-
cas.

krwli 2echniiai Report

B-58 Alpha Requirements and Rationale

" graceful degradation-provided by mechanisms that use an ordering function
(currently based on the timeliness constraints and relative importance) associ-
ated with all requests for services, in order to sacrifice lower-valued requests in
favor of higher-valued ones when resource allocation conflicts arise.

" fault containment--provided by mechanisms that place each object in a sepa-
rate (hardware-enforced) address space, and by separating software compo-
nents into private system-enforced protection domains, with all interactions
restricted to those explicitly allowed by the capability mechanism. This sup-
ports a form of defensive protection, where errors are prevented from propagat-
ing among objects.

While the Alpha operating system provides a set of mechanisms to support these
objectives, its robustness mechanisms are not intended to form a complete facility. The
kernel is intended as a framework within which policy issues relating to these robustness
techniques can be explored. The mechanisms provided in the kernel for atomic transac-
tions and replication are initial versions of the more complete sets of mechanisms being
developed in hese &i-going projects. The on-going work by the Archons project is
addressing the development of system-level policies which use these mechanisms. In
fact, the area of real-time atomic transactions is addressed by an in-progress thesis
research project [Clark 88].

The Alpha operating system's concern for reliability is manifest at all levels within the
system--from the basic assumptions, to the programming abstractions, and all the way
down through the system's design and implementation. The variety of object-orientation
in Alpha was chosen in the belief that it would be well suited to the type of robustness
techniques that have been developed by the Archons project for real-time command and
control applications [Clark 88, Sha 85]. The Alpha object model provides a simplified (or
constrained) control structure for interactions among software components (as compared
to a more general process and message-based system model) and restricts the accessi-
bility of the encapsulated data items. Among other things, this serves to simplify the
task of tracking the operations performed on objects that is required in the implementa-
tion of atomic transactions. The fact that the object model centralizes all access to encap-
sulated data reduces the complexity involved in structuring operations so as to maximize
the concurrency that can be obtained from objects (both within and outside of atomic
transactions).

6.3.1 Exception Handling

The different types of exceptions that can occur in Alpha are classified into three
groups: client-defined, kernel-defined, and machine-defined exceptions. Client-defined
exceptions indicate client-level events by way of the system's normal operation invoca-
tion facilities. For example, the failure of a client operation may be indicated to the invok-
ing object by way of an operation invocation return parameter. Also, objects can
"register" operations with other objects that are to be invoked when a given client-level
exception occurs. In this way, a thread can invoke a given operation on an object when a
client-level exception is detected, which may change the state of the object in such a way
as to allow other threads to detect the exception (i.e., an implementing an interrogative
signal, as opposed to an imperative one). These exceptions exist at the application-level

Final Technical Report

Alpha Requirements and Rationale B-59

and system-level in Alpha and the kernel is typically not involved in the signalling or
interpretation of this class of exceptions. However, the application programmer is capa-
ble of generating other types of exceptions with his code--e.g., divide by zero or invoke
an abort operation. Even though an explicitly generated operation, like a transaction
abort, is not strictly an exception, its effects are the same and it is treated as an excep-
tion in Alpha.

System-defined exceptions stem from the operating system's fundamental behavior
and can be classified into three groups, depending on which system feature is responsible
for the exception. The system-defined exceptions are due to the fact that Alpha is a dis-
tributed operating system that supports time constraints and atomic transactions.
Because of the distributed nature of Alpha, processing nodes may fail while threads span
nodes. This means that it is both possible for an invocation to fail, and for detached (i.e.,
orphaned) computations to be created. Therefore, the system must provide a means of
indicating the failure of operation invocations, as well as a means for detecting and elimi-
nating orphan threads. In addition, it is necessary that the system detect and eliminate
orphaned portions of threads in a timely fashion. The longer that an orphaned computa-
tion continues to execute, the more resources it wastes (because such a computation is
not able to complete, therefore the work it accomplishes is in vain), and the greater the
amount of effort that will have to be expended to compensate for the actions it has per-
formed. This means that an asynchronous thread section abortion mechanism is called
for, to eliminate portions of threads regardless of whether they are blocked waiting on a
remote invoke or are actively computing (i.e., either the head segment or body seg-
ments). This asynchronous thread abort mechanism must accomplish the orderly repair
of "broken" threads (i.e., notify the new head of the thread when the orphaned section(s)
have been successfully eliminated), and it must also be compatible with time-driven
resource management objectives and mechanisms.

Any operating system that purports to support the time-driven management of
resources must provide a means of dealing with the exceptiois whidi stem from the
inability of a computation to meet its given execution time constraints. The exceptions
which occur when a time constraint expires require the same prompt attention as is need-
ed for orphaned thread detection elimination. By definition, the continued execution of a
computation that has missed a deadline (i.e., a hard time constraint) can no longer pro-
vide value to the system (and may in fact be counter-productive to the system). There-
fore, an asynchronous exception mechanism is called for in this case as well. The system
should provide a means of diverting control from a thread's normal flow of execution to an
exception handler whenever a time limit (as defined by a thread's timeliness attributes)
expires. Furthermore, this exception handling mechanism should preserve the state of
the threads that miss time constraints, in order to permit the graceful recovery of a com-
putation following an expired time constraint. As with all mechanisms in Alpha, this
exception mechanism must work in concert with the system's overall time-driven
resource management philosophy. The use of atomic transactions also imposes a
requirement that the system support the (both synchronous and) asynchronous diversion
of a thread's control that results when a transaction aborts (e.g., because of node failures
or as a result of an explicit transaction abort command). As far as mechanisms for manip-
ulating threads as a result of exceptions are concerned, the needs of atomic transactions
are very similar to those of handling thread breaks cr nused deadlines.

Final Technical Report

B-60 Alpha Requirements and Rationale

Machine-defined exceptions stem from events in the underlying hardware (e.g., divide
by zero, bus error, non-existent memory, and access violations). All operating systems
must deal with the various, machine-dependent ways that these exceptions are present-
ed to the client. In general, these exceptions require that the computation that is respon-
sible for the exception event be diverted from its normal path of execution, and vectored
to some exception handling procedure.

When an exception occurs in Alpha, the objects affected are cleaned up (i.e., made con-
sistent) by executing each of the abort block handler code sections from the head of the
thread, back up stream until the proper level has been reached. This allows a thread to
be cleaned up from within (by the thread itself, executing with its proper attributes), and
this activity can span multiple objects and nodes as the thread works its way back
upstream.

The asynchronous diversion of a thread's flow of control can leave an object in an incon-
sistent state. The system provides its own exception handling code to perform the
cleanup necessary to ensure that system data structures are left in a consistent state fol-
lowing an exception (and that system resources are riot "lost"). In addition to the sys-
tem's exception handling code, the client can also provide application-specific exception
handlers to perform specialized recovery/compensation actions, that can restore the appli-
cation to a consistent state in a much more efficient mariner than can be accomplished by
the brute-force techniques that must be used by the system. The exception handling
code that is associated with each exception block can be used to restore the consistency
of the object's state, compensate for the effects of the aborted thread, or salvage usahle
results from the partially completed computation.

6.3.2 Optimizing for Exceptions

The robustness of Alpha is enhanced by optimizing the design and implementation for
the exception cases, instead of the expected ones. Examples of the application of this
principle can be found in the system's exception handling mechanisms, communications
protocols, and operation invocation facility. The Alpha exception handling mechanism
provides a unified mechanism for the management of exceptions associated with time
constraints, atomic transactions and machine exceptions. For this mechanism, the nor-
mal condition is that the transaction commits, time constraint is satisfied, or no machine
exception occurs; the exception case is that the transaction aborts, time constraint is not
met, or a machine exception occurs. Performance is optimized in the exception case by
trapping into the kernel on every exception block entry, in order to deposit the state infor-
mation needed in case an exception occurs while executing within the block.

Another example is found in the remote operation invocation protocol that is used to
provide the maintenance of threads as they extend across nodes. The normal case for
this protocc is that the continuity of the thread is not broken by failures in nodes (or the
communications network); the exct.ption cse is when a node (or the communications
network) fails and the thread is broken. This mechanism's perform--c "- optiniued for
the exception case (at the expense of the normal case) by the periodic exchange of keep-
alive messages among the nodes that a thread extends across, rather than using only
end-to-end time-outs on dih. rcnotz in' -ocaticns.

Furthermore, the kernel does not make use of hints in any form. In particular, the inter-
nal global identifiers used to access programming entities (e.g., threads and objects) in

Final Technical Report

Alpha Requirements and Raaonale B-61

Alpha does not include a (explicit) reference to the physical location of the intended enti-
ty. The expected case for this function would be that the hint is correct, while the excep-
tion case would be that the hint was wrong. The optimization of the exception case's
performance is achieved by performing a multicast-like message transmission on each
remote invoke, in order to locate the (dynamically relocatable) entities on a per-invoca-
tion basis. This is done instead of using a hint about the entity's physical location to per-
form a point-to-point remote procedure call, with a special sub-protocol that is to be per-
formed to locate the target entity when the hint is wrong. While hints might speed refer-
ences in a static system, when drastic dynamic reconfiguration of the system is
underway, the use of hints incurs a higher than normal cost when the system can least
afford it-i.e., in an exception condition.

6.4 Adaptability
One of the reasons for choosing the form of distributed computer system upon which the

Alpha operating system is to execute has to do with the high degree of extensibility that
is inherent in loosely coupled, bus-structured distributed systems.

The adaptability of the system resource management facilities in Alpha is supported to
a great extent through the use of (both static and dynamically applied) application-specif-
ic information. In particular, a wide range of application- and system-specific attributes
can be associated with computations and carried along with threads as they execute
within the system. This application-specified information allows the system's resource
management algorithms to adapt to the changing demands placed on the system by the
application as the availability of system resources change.

In addition, the adaptability requirements of Alpha are addressed in two major
ways--modularity for the operating system's clients is supported through the use the
object-oriented programming model supported by the operating system, and adaptability
within the operating system itself is provided by a policy/mechanism separation approach
[Hansen 70].

6.4.1 Object-Oriented Programming

The kernel provides a simple and uniform interface to its clients that centers around the
operation invocation facility. The object programming abstraction supported by the oper-
ating system exhibits the same benefits associated with object-oriented programming
abstractions in general, among which are information hiding, increased modularity,
enhanced uniformity and simplicity of the programming interface, and reduced life-cycle
costs [Bayer 79, Cox 86].

For reasons of adaptability, the attributes of threads (such as time constraints) are (by
convention) modified in a block-structured and strictly nested within the operations of
objects (e.g., a time constraint block begins and ends within the same object operation).
This type of constraint provides modular, structured way of managing thread attributes,
and is not unlike the way in which monitors confine all of the P and V operations on
sem?-phore% into a common module in order to add structure to, and avoid the problems
of, distributed synchronization.

The wei-dned interfaces defined by object not only support information hiding by
separating their interface specification from their internal implementation, but they also

Final Technical Report

B-62 Alpha Requirements and Rationale

permit all system services, including devices (as well as special hardware augmenta-
tions), to be presented to the programmer as objects. This feature allows the system to
be modified by substituting, interposing, or overlaying modified objects, without affecting
existing code. Furthermore, Alpha supports the simple and effective downward migration
of functionality by allowing system functionality to be developed as client objects (for rea-
sons of convenience) and then migrated into the kernel (for reasons of performance).

6.4.2 Policy/Mechanism Separation

The concept of policy/mechanism separation has been shown to be valuable in the
design of modular operating system facilities [Hansen 71, Levin 75, Habermann 76].
Briefly, a policy is defined as a specification of the manner in which a set of resources are
managed, and a mechanism is defined as the means by w'ich policies are implemented
[Hansen 70]. Policy/mechanism separation is a structuring methodology that involves
the segregation of entities that dictate resource management strategies from entities that
implement the low-level tactics of resource management.

Alpha's kernel is implemented as a collection of mechanisms from which policy deci-
sions were carefully excluded. Each major logical function in the kernel is manifest in an
individual mechanism, and a great effort was made to ensure a proper separation of con-
cerns among these mechanisms. If the mechanisms are in fact pure (i.e., devoid of policy
decisions) and complete, then it is possible to use them in implementing a wide range of
system- and application-level facilities, and indeed entirely different operating systems.
Adaptability is achieved through the separation of functions into mechanisms; implemen-
tation changes are restricted to individual mechanisms, and changes in system policy do
not require changes in the functionality of mechanisms, just changes in the use of mecha-
nisms.

The Alpha operating system supports policy/mechanism separation which allows the
easy addition or modification of resource management policies-most of the major sub-
systems consist primarily of frameworks into which a wide range of differing policies can
be inserted. Furthermore, the mechanisms that provide the Alpha programming model
allow specialized, application-specific policies to be developed, either at system-build
time or at run-time. The system does not enforce a particular policy on the user, but
rather provides mechanisms that allow a wide range of policies to be implemented (e.g.,
in the area of concurrency control and exception handling).

An example of where the effects of policy/mechanism separation within the system are
visible at the programming interface level can be seen in the kernel's mechanisms for
managing object creation. The kernel mechanism that permits the creation of new objects
does not include a policy for the placement of the newly created object. The kernel cre-
ates a new object local to the node at which the creation operation was invoked, instead
of choosing a "desirable" location for the new object (e.g., on the least loaded node, on
the node with the greatest amount of common data, or on the node nearest the needed
I/O devices). In this way, the kernel's clients are free to apply the appropriate, possibly
application-specific, policy to the initial placement of objects. This applies as well to the
creation of replicated objects and the initial placement of the individual replicas. Further-
more, the keme!'s native, flat object space allows arbitrary constraints on object relation-
ships t, be applied at the higher levels, to achieve the desired form of structure among
objects, without suffering from potentially conflicting, system-imposed structures.

Final Technical Report

Alpha Requirements and Rationale B-63

7 Acknowledgments
Many people contributed to this effort, and many others continue to contribute as the

Archons project enters its next phase.

Doug Jensen is the founder of the Archons project, he obtained the support for the pro-
ject over its 10-year existence, and provided most of the fundamental philosophy and con-
cepts in Alpha. Doug continues to provide support and guidance for this research effort
and an enhanced Release 2 of the Alpha operating system that is being developed at
Kendall Square Research Corporation.

In his brief visit with the Archons project, Martin McKendry initiated the implementa-
tion effort that has become Alpha and provided many of the initial implementation con-
cepts. Ray Clark worked on defining and implementing the basic system abstractions
and is now performing his thesis research in the area of real-time transactions within the
Alpha context.

Sam Shipman and worked on various subsystems and support tools, and worked on
refining and completing the system design and implementation. David Maynard also
worked on various aspects of the system's design and implementation, and acted as the
project liaison with General Dynamics during our joint C2 demonstration effort. David is
now working on a thesis in the area of real-time scheduling for decentralized computers
with multiprocessor nodes. Huay-Yong Wang worked on the scheduling subsystem and
the design and implementation of varicus other system functions.

Other project members that contributed to the project are Jeff Trull, Chuck Kollar, Bruce
Taylor, Don Lindsay, and Dan Reiner.

Thanks is due to Tom Lawrence and Dick Metzger, the Archons project's prime spon-
sors at the Rome Air Development Center. Additionally, we would like to thank Russell
Kegley and Calvin Head of the Fort Worth Division of General Dynamics Corporation for
their assistance in our joint C2 application development effort.

UNIX is a trademark of AT&T Bell Laboratories.

VAX and VMS are trademarks of Digital Equipment Corporation.

Ethernet is a trademark of Xerox Corporation.

Ada is a trademark of the United States Department of Defense.

Accent is a trademark of Perq Corporation.

VRTX is a trademark of Hunter & Ready Corporation.

RTU is a trademark of Massachusetts Computer Corporation.

Final Technical Report

8-64 Alpha Requirements and Rationale

References

[Ada 83] United States Department of Defense.
Reference Manual for the Ada Programming Language.
ANSI/MIL-STD-1815A-1983.
Springer-Verlag, New York, 1983.

[Anderson 81] Anderson, T. and Lee, P. A.
Fault Tolerance: Principles and Practice.
Prentice-Hall, Englewood Cliffs, New Jersey, 1981.

[Accetta 86] Accetta, M. J., Baron, R. X., Golub, D., Rashid, R. F., Tevanian, A.
and Young, M.

A New Kernel Foundation for UNIX Development.
In Proceedings of the Summer 1986 USENIX Technical Conference

and Exhibition, pages 35-41, June, 1986.

[Avizienis 78] Avizienis, A.
Fault-Tolerance: The Survival Attribute of Digital Systems.
Proceedings of the IEEE 66(10): 1109-1125, October, 1978.

[Bayer 79] Bayer, R., Graham, R. M. and Seegmueller, G. (editors).
Lecture Notes in Computer Science. Volume 60: Operating Systems:

An Advanced Course.
Springer-Verlag, Berlin, West Germany, 1979.

[Boebert 78] Boebert, W. E.
Concepts and Facilities of the HXDP Executive.
Technical Report 78SRC21, Honeywell Systems & Research Center,

March, 1978.

[Boehm 81] Boehm, B. W.
Advances in Computer Science and Technology: Software Engineer-

ing Economics.
Prentice Hall, Englewood Cliffs, New Jersey, 1981.

[Cheriton 84] Cheriton, D. R.
The V Kernel: A Software Base for Distributed Systems.
IEEE Software 1(2):19-43, January, 1984.

[Clark 83] Clark, R. K. and Shipman, S. E.
The Archons Testbed-A Requirements Study.
Archons Project Technical Report #83051, Department of Computer

Science, Carnegie-Mellon University, May, 1983.

[Clark 88] Clark, R. K.
Operating System Kernel Support for Real-Time Atomic Transactions.
Ph.D. Thesis, Department of Computer Science, Carnegie-Mellon

University.
In progress.

Final Technical Report

Alpha Requirements and Rationale B-65

[Cox 86] Cox, B. J.
Object-Oriented Programming.
Addison-Wesley, Reading, Massachusetts, 199 A.

[DRC 86] Dynamics Research Corporation
Distributed Systems Technology Assessment for SDI.
Technical Report E-12256U, Electronic Systems Division, USAF

Systems Command, September, 1986.

[Farber 72] Farber, D. J. and Larson, K. C.
The System Architecture of the Distributed Computer System-The

Communications System.
In Proceedings, Symposium on Computer-Communications Networks

and Teletraffic, pages 21-27. Polytechnic Institute of Brooklyn,
April, 1972.

[Fitzgerald 85] Fitzgerald, R. and Rashid, R. F.
The Integration of Virtual Memory Management and Interprocess

Communication in Accent.
In Proceedings, Tenth Symposium on Operating System Principles,

pages 13-14. ACM, November, 1985.

[Franta 81] Franta, W. R., Jensen, E. D., Kain, R. Y. and Marshall G. D.
Real-Time Distributed Computer Systems.
Advances in Computers 20:39-82, 1981

[GD 80] General Dynamics
Computer Program Product Specification for the System Function

Processor Operational Flight Program for the F-16 Multination
Staged Improvement Program, Block 30.

Technical Report #CPCI 7175-1A00, General Dynamics Corporation,
December, 1980.

[Gifford 79] Gifford, D. K.
Weighted Voting for Replicated Data.
In Proceedings, Seventh Symposium on Operating Systems Principles,

pages 150-162. ACM, December, 1979.

[Glass 80] Glass, R. L.
Real-Time: The "Lost World" of Software Debugging and Testing.
Communications of the ACM 23(5):264-271, May, 1980.

[Goldberg 83] Goldberg, A. and Robson, D.
Smalltalk-80: The Language and its Implementation.
Addison-Wesley, Reading, Massachusetts, 1983.

[Habermann 76] Habermann, A. N., Flon, L. and Cooprider, L.
Modularization and Hierarchy in a Family of Operating Systems.
Communications of the ACM 19(5):266-272, May, 1976.

Final Technical Report

B-66 Alpha Requirements and Rationale

[Hansen 70) Brinch Hansen, P.
The Nucleus of a Multiprogramming System.
Communications of the ACM 13(4):238-250, April, 1970.

[Hansen 71] Brinch Hansen, P.
RC4000 Software Multiprogramming System.
A/C Regnecentralen, Copenhagen, 1971.

[Herlihy 86] Herlihy, M. P.
Using Type Information to Enhance the Availability of Partitioned

Data.
Technical Report CMU-CS-85-119, Department of Computer Sci-

ence, Carnegie-Mellon University, April, 1985.

[Henize 84] Henize, J. A.
Understanding Real-Time UNIX.
MASSCOMP Technical Report, January, 1986.

[Jensen 75] Jensen, E. D.
Time-Value Functions for BMD Radar Scheduling.
Technical Report, Honeywell System and Research Center, June,

1975.

[Jensen 76a] Jensen, E. D.
The Implications of Physical Dispersal on Operating Systems.
Workshop on Distributed Processing, Brown University, Providence,

Rhode Island, August, 1976.

[Jensen 76b] Jensen, E. D. and Anderson, G. A.
Feasibilit" Demonstration of Distributed Processing for Small Ships

Command and Control Systems.
Final Report N00123-74-C-0891, Honeywell Systems & Research

Center, August, 1976.

[Jensen 78a] Jensen, E. D.
The Honeywell Experimental Distributed -'rocessor-An Overview.
Computer 11 (1): 137-147, January, 1978.

[Jensen 78b] Jensen, E. D., Marshall, G. D., White, J. A. and Helmbrecht, W. F.
The Impact of Wideband Multiplex Concepts on Microprocessor-

Based Avionic System Architectures.

Technical Report AFAL-TR-78-4, Honeywell Systems & Research
Center, February, 1978.

[Jensen 84] Jensen, E. D. and Pleszkoch, N.
ArchOS: A Physically Dispersed Operating System.
In Distributed Processing Technical Committee Newsletter. IEEE,

June 1984.

Final Technical Report

Alpha Requirements and Rationale B.67

[Jones 79) Jones, A., Chansler, R., Durham, I., Schwans, K. and Vegdahl. S.
StarOS, a Multiprocessor Operating System for the Support of Task

Forces.
In Proceedings, Seventh Symposium on Operating System Principles,

pages 117-127. ACM, December, 1979.

[Lampson 811 Lampson, B. W., Paul, M. and Siegert, H. J. (editors).
Lecture Notes in Computer Science. Volume 105: Distributed Sys-

tems--Architecture and Implementation.
Springer-Verlag, Berlin, 1981.

[Lechovski 86] Lechovski, J. P. and Sha, L.
Performance of Real-Time Bus Scheduling Algorithms.
ACM Perfcrmance Evaluation Review 14(1):44-53, May 1986.

[Lehman 85] Lehman, M. M. and Belady, L. A.
Program Evolution: Processes of Software Change.
Academic Press, London, 1985.

[Leinbaugh 80] Leinbaugh, D. W.
Guaranteed Response Times in a Hard-Real-Time Environment.
IEEE Transactions on Software Engineering SE-6(1):85-91, January,

1980.

[Levin 75] Levin, R., Cohen, E., Corwin, W., Pollock, F., and Wulf, W.
PolicyfMechanism Separation in Hydra.
In Proceedings, Fifth Symposium on Operating Systems Principles,

pages 132-140. ACM, November, 1975.

[Liskov 84] Liskov, B. H.
Overview of the Argus Language and System.
Programming Methodology Group Memo 40, MIT Laboratory for

Computer Science, February, 1984.

[Liskov 85] Liskov, B. H., Herlihy, M. P. and Gilbert, L.
Limitations of Synchronous Communication with Static Process Struc-

ture in Languages for Distributed Computing.
Technical Report CMU-CS-85-168, Department of Computer Sci-

ence, Carnegie-Mellon University, October, 1985.

[Liu 73] Liu, C. L. and Leyland, J. W.
Scheduling Algorithms for Multiprogramming in a Hard Real Time

Environment.
Journal of the ACM 20(1):46-61, 1973.

[Locke 86] Locke, C. D.
Best-Effort Decision Making for Real-Time Scheduling.
Ph.D. Thesis, Department of Computer Science, Carnegie-Mellon

University, May, 1986.

Final Technical Report

B-68 Alpha Rsquirements and Rationale

[Maynard 88] Maynard, D. P., Clark, R. K., Kepley, R. B., Keleher, Northcutt, J. D.,
Shipman, S. E., and Zimmermzn, B. A.

An Example Real-Time Command and Control Application.
Archons Project Technical Report #88032, Department of Computer

Science, Carnegie-Mellon University, March, 1988

[McQuillan 80] McQuillan, J. M., Richer, I. and Rosen, E. C.
The New Routing Algorithm for the ARPANET.
IEEE Transactions on Communications COM-28(5):711-719, May,

1980

[Metcalf 72] Metcalf, R. M.
Strategies for Interprocess Ccmmunication in a Distributed Comput-

ing System.
In Proceedings, Symposium on Computer-Communications Network

and Teletraffic, pages 519-526. Polytechnic Institute of Brooklyn,
April, 1972.

[Mockapetris 77] Mockapetris, P. V., Lyle, M. and Farber, D. J.
On the Desigr of a Local Network Interface.
In Proceedings, Information Processing 77. IFIP, 1977.

[Moss 85] Moss, J. E. B.
Nested Transactions. An Approach to Rel -ole Distributed Comput-

ing.
The MIT Press, Cambridge, Massachusetts, 1985.

[Nelson 81] Nelson, B. J.
Remote Procedure Call.
Ph.D. Thesis. Department of Computer Science, Camegie-Mellcn

University, May, 1981.

[Northcutt 87] Northcutt, J. D.
Mechanisms for Reliable Distribuied Real-Time Operating Systems:

The Alpha Kernel.
Academic Press, Boston, 1987.

[Northcutt 88a] Northcutt, J. D.
The Alpha Operating System. Programming Model
Archons Project Technical Report #8802i, Department of Computer

Science, Carnegie-Mellon University, February, 1988.

[Northcutt 88b] Northcutt, J. D.
The Alpha Distributed Computer System Testbed.
Archons Project Technical Report #88033, Department of Computer

Science, Carnegie-Mellon University, March, 1988.

[Ousterhout 80] Ousterhout, J. K., Sceiza, D. A and Sindhu, P. S.
Medusa: An Experiment in Distributed Operating System Structure

(Summary).
Communications of the ACM 23(2):92-105, February, 1980.

Final Technical Report

Alpha Requdremenu and Raftonale B-69

[Parnas 77] Pamas, D. L.
Use of Abstract Interfaces in the Development of Software for

Embedded Computer Systems.
Technical Report 8047, Naval Research Laboratory, December, 1977.

[Quirk 85] Quirk, A. B.
Verification and Validation of Real-Time Software.
Springer-Verlag, Berlin, 1985.

[Randell 78] Randell, B., Lee, P. A. and Treleaven, P. C.
Reliability Issues in Computing System Design.
Computing Surveys 10(2):123-165, June, 1978.

[Rashid 81] Rashid, R. F. and Robertson, G. G.
Accent: A Communications Oriented Network Operating System Ker-

nel.
Technical Report CMU-CS-81-123, Department of Computer Sci-

ence, Carnegie-Mellon University, April 1981.

[Ready 86] Ready, J. F.
VRTX: A Real-Time Operating System for Embedded Microproces..

sor Applications.
IEEE Micro 6(4):8-17, August, 1986.

[Savitzky 85] Savitzky, S. R.
Real-Time Microprocessor Systems.
Van Nostrand Reinhold, New York, 1985.

[Sha 851 Sha, L.
Modular Concurrency Control and Failure Recovery-Consistency,

Correctness and Optimality.
Ph.D. Thesis, Department of Electrical Engineering, Carnegie-Mellon

University, 1985.

[Shipman 88] Shipman, S. E.
The Alpha Operating System: Programming Language Support.
Archons Project Technical Report #88042, Department of Computer

Science, Carnegie-Mellon University, April. 1988.

[Stankovik 88] Stankovik, J. A.
Real-Time Computing Systems: The Next Generation.
Technical Report COINS 88-06, University of Massachusetts, Jan-

uary 1988.

[Smith 79] Smith, R. G.
The Contract Net Protocol: High-Level Communication and Control in

a Distributed Problem Solver.
In Procecdings, First International Conference on Distributed Com-

puting, pages 185-192. IEEE, October, 1979.

Final Technical Report

B-70 Alpha Requirements and Rationale

[Thomas 78] Thomas, R. H., Schantz, R. E. and Forsdick, H. C.
Network Operating Systems.
Technical Report 3796, Bolt, Beranek and Newman, 1978.

[Thompson 801 Thompson, J. R., Ruspini, E. H. and Montgomery, C. A.
TAC C3 Distributed Operating System Study.
Technical Report RADC-TR-79-360, Operating Systems, Inc. for

Rome Air Development Center, January, 1980.

[Walis 84] Wallis, D. E.
DSDB/DTN Machine Level Architecture and Principles of Operation.
Internal Technical Report IBM-2849070, May, 1984.

[Wirth 77] Wirth, N.
Towards a Discipline of Real-Time Programming.
Communications of the ACM 20(8):557-585, August, 1977.

[Wittie 79] Wittie, L. D.
A Distributed Operating System for a Reconfigurable Network Com-

puter.
In Proceedings, First International Conference on Distributed Com-

puting Systems, pages 669-677. IEEE, October, 1979.

[Wulf 81] Wulf, W. A., Levin, R. and Harbison, S. P.
Hydra/C.mmp: An Experimental Computer System.
McGraw/Hill, New York, 1981.

Final Technical Report

An Example Comm.2nd, Control and Battle Management Application for Alpha C-i

Table of Contents

A bstract C -1

1 Introduction .. C -2
1.1 The Alpha Application Effort ... C-2
1.2 Application Selection .. C-3
1.3 Application Developm ent ... C-4
1.4 Caveats .. C-5
1.5 Report Outline ... C-5

2 The Alpha Operating System .. C-6
2.1 Alpha Programm ing M odel .. C-6
2.2 Tim e-Driven Resource M anagem ent .. C-8

2.2.1 Tim e-Value Functions ... C-8
2.2.2 Best-Effort Resource M anagement .. C-9

2.3 Support for Survivability .. C-9
2.4 Pre-Release Alpha Version 0.5 .. C-i 1
2.5 The Alpha Distributed Computer System Testbed ... C-11

2.5.1 Distributed System Testbed ... C-12
2.5.2 Developm ent and Control System ... C-13

3 A pplication R equirem ents ... C -14
3.1 Scenario Description ... C-14
3.2 Application Processing Requirements ... C-15

3.2.1 Tracking ... C-16
3.2.2 M ission Planning ... C-17
3.2.3 W eapon Systems Control .. C-17

3.3 Application Tim eliness Requirem ents .. C-18
3.3.1 Radar Plot Correlation ... C-18
3.3.2 W eapons Guidance .. C-18
3.3.3 SAM Control ... C-19

3.4 Application Survivability Requirements .. C-19

4 Experimental Environment ... C-21
4.1 Scenario Simulator .. C-21
4.2 Operator Console .. C-23
4.3 Experim ental Control Console .. C-25
4.4 Comm unication Interface .. C-27

5 A ir D efense System D esign .. C -28
5.1 Design Approach .. C-28
5.2 Functional Decomposition .. C-29

6 A ir D efense System O bjects .. C -31
6.1 Tracking Objects ... C-32

6.1.1 Plot Correlator .. C-32

Final Technical Report

C-ii An Example Command, Control and Battle Management Application for Alpha

6.1.2 Track Database ... C-33
6.2 M ission Planning Objects ... C-34

6.2.1 Track H andler .. C-34
6.2.2 Track Identifier .. C-35
6.2.3 Threat A ssessm ent ... C-35
6.2.4 W eapons M anager ... C-36

6.3 W eapon System s Control Objects .. C-37
6.3.1 Interceptor Controller ... C-38
6.3.2 M issile Controller .. C-39
6.3.3 AW ACS Controller .. C-40
6.3.4 SAM Controller ... C-41
6.3.5 SAM Engagem ent ... C-41

6.4 System Support Objects .. C-42
6.4.1 Com m unication Interface ... C-42
6.4.2 Serial I/O .. C-43
6.4.3 Network I/O ... C-43
6.4.4 N ode Status .. C-44
6.4.5 Distributed Services M anager .. C-45
6.4.6 Local Services M anager ... C-46
6.4.7 Recovery M anager ... C-46

7 Air Defense System Threads .. C-47
7.1 Tracking Threads .. C-48

7.1.1 Plot Correlation .. C-48
7.1.2 Track D atabase M aintenance ... C-48

7.2 M ission Planning Threads .. C-48
7.2.1 N ew Track D ispatching ... C-48
7.2.2 Track Processing .. C-48

7.3 W eapon System s Control Threads .. C-49
7.3.1 Interceptor Launch and Control ... C-49
7.3.2 M issile Launch and Control ... C-49
7.3.3 AW A CS Launch and Control .. C-49
7.3.4 SAM Launch and Control .. C-49
7.3.5 SAM M onitoring .. C-49

7.4 System Support Threads .. C-50
7.4.1 Input Processing .. C-50
7.4.2 N ode Status M onitoring .. C-50
7.4.3 Node Lifeline .. C-50
7.4.4 Node Recovery Processing ... C-50

8 Technology Evaluation ... C-51
8.1 Distribution and Survivability .. C-51

8.1.1 Object Distribution .. C-52
8.1.2 Thread Distribution .. C-53
8.1.3 N ode Failure Response .. C-54

8.2 Tim e-Driven Resource M anagem ent ... C-55
8.2.1 Application Tim e-Value Functions .. C-56

Final Technical Report

An Example Conimm.,d, Control and Battle Management Application for Alpha C-iii

8.2.2 System Overload Behavior .. C-58

9 Conclusions ... C-60
9.1 Lessons Learned .. C-60

9.1.1 Decentralized Computing .. C-60
9.1.2 Programming M odel .. C-60
9.1.3 Time-Driven Resource M anagement ... C-60
9.1.4 System Survivability .. C-61
9.1.5 Program M anagement .. C-61

9.2 Future Directions .. C-62
9.2.1 Related Research .. C-62
9.2.2 System Enhancements ... C-62
9.2.3 Future Applications .. C-63

References C-64

Appendix I: Application Program Example .. C-66

Final Technical Report

C-tv An Example Command, Control and Battle Management Application for Alha

List of Figures

Figure 1 Example Object .. C-7
Figure 2 Example Time-Value Functions ... C-8
Figure 3 Alpha Distributed Computer System Testbed Structure C-12
Figure 4 Alpha Testbed Node Architecture .. C-13
Figure 5 High-Level System Functions .. C-16
Figure 6 Overall System Architecture .. C-22
Figure 7 Operator Console Display .. C-24
Figure 8 Experimental Control Console Display .. C-25
Figure 9 Node Information Display .. C-26
Figure 10 Air Defense System Object Types .. C-31
Figure 11 Air Defense System Threads .. C-47
Figure 12 Typical Distribution of Objects and Threads C-51
Figure 13 Object Distribution Classifications ... C-52
Figure 14 Reconfiguration After a Node Failure .. C-54
Figure 15 ADSP Time-Value Function Examples .. C-56
Figure 16 Normal Behavior .. C-58
Figure 17 Overload Behavior .. C-59

Final Technical Report

An Example Real-Time Command, Control and Battle Management Applicadon for Alpha C-1

Abstract
This report describes the design, implementation, and evaluation of a demonstration

command, control and battle management (C2/BM) system developed jointly by Archons
project researchers at Carnegie Mellon University (CMU) and by technical staff members
at General Dynamics Corporation (GD). Over the course of a few months, this team de-
fined a realistic air defense scenario, designed a distributed, real-time C2/BM system for
this scenario, and developed a prototype implementation of the design using an early ver-
sion of the Alpha operating system. In addition, a support environment was constructed
to exercise the application. The primary goals of the application effort were to demon-
strate the decentralized, real-time technology incorporated in the Alpha operating sys-
tem and to evaluate that technology in a realistic context. To that end, the application ex-
ercises the distribution, real-time, and survivability mechanisms provided by Alpha.

By transferring Alpha technology from a research environment into an industrial setting,
Archons researchers were able to obtain feedback from professional designers and sys-
tem builders. This feedback validated the belief that the programming model and key sup-
port mechanisms provided by Alpha are well-suited to the design and construction of
large, distributed, real-time control applications.

Final Technical Report

C-2 An Example Real-Time Command, Control and Battle Management Application for A4ha

Introduction
This report describes the design, implementation, and evaluation of a real-time com-

mand, control, and battle management (C2/BM) application developed to run on an early
version of the Alpha operating system. This was an experimental effort aimed at investi-
gating the efficacy of using Alpha technology as a basis for developing large, distributed,
real-time systems. Over the course of a few months, a small team of people from the Ar-
chons project at Carnegie Mellon University (CMU) and from the Fort Worth Division of
General Dynamics Corporation (GD) designed and developed both an air defense system
prototype (ADSP) and a support environment in which to exercise it. Using this experi-
mental prototype, we have demonstrated that Alpha's basic abstractions and resource
management techniques can be used in the development of the complex real-time sys-
tems that will be required in the future.

Alpha is an adaptable, decentralized operating system for real-time applications. It is
being developed as part of the Archons project's on-going research into distributed real-
time systems. Alpha is a new kind of operating system that is unique in three significant
ways. First, Alpha is decentralized, providing reliable resource management transpar-
ently across physically dispersed nodes. This allows distributed application program-
ming to be done as though it were centralized. Second, Alpha provides comprehensive,
high-technology support for real-time systems. In particular, it supports supervisory
control applications (e.g., industrial automation, combat platform management) which are
characterized by predominately aperiodic activities that have critical time constraints
(such as deadlines). Third, Alpha provides a unique combination of mechanisms for sup-
porting the construction of highly survivable applications. Chapter 2 provides a brief in-
troduction to Alpha. A book [Northcutt 87] and a series of technical reports (listed in the
references) describe Alpha in more detail.

1.1 The Alpha Application Effort
Early in 1987, the Alpha research group at CMU began an effort aimed at evaluating

and demonstrating the potential of Alpha technology in the context of a realistic, distribut-
ed, real-time application. Although Alpha implementation was still in its early stages
(Pre-Release 0.2), we felt that building a realistic application would provide useful feed-
back so we could evaluate and, if necessary, redirect our research and development ef-
forts.

We use the term "realistic," as opposed to "real," because experimenting with real
applications of the kind that Alpha is designed to support would be difficult and expen-
sive. Such applications are typically embedded--controlling vehicles, factories, or other
complex machinery that interacts with the physical world. Real applications are also very
complex. This complexity often impedes experimentation by making it difficult to isolate
individual effects so that the results of various changes can be observed. To overcome
these problems, we decided to build an experimental prototype containing the important
components of a real application, but with few of the extra features that might limit the
visibility of critical effects.

Our specific objective was to create an application that was reasonably representative
of supervisory-level, real-time C2/BM systems. It was important that the application

Final Technical Report

An Enample Real-Time Command, Control and Battle Management Application for Alpha C-3

have sufficiently complex and stringent requirements to benefit from Alpha's support for
distributed processing, time-driven scheduling, and system survivability. Some of the
specific requirements were:

" an application that could take advantage of the potential performance and surviv-
ability bencfits offered by Alpha's transparent distributed processing,

" an application that could demonstrate system survivability and graceful degrada-
tion through automatic reconfiguration after node failures and through
(re)integration of new or repaired nodes,

" an application that could demonstrate the scheduler's ability to ensure that: 1)
when possible, application time constraints are satisfied, and 2) when overload-

ed, application-specified policies are used to control the allocation of the limited
resources available,

" an application with dynamically varying time constraints that could exercise the
flexibility and power of the best-effort scheduling techniques.

Finally, we required an application that could graphically illustrate these capabilities dur-

ing a fairly short presentation that involved running the application software while ex-

plaining its behavior to an audience in real time. This final requirement allowed us to
demonstrate our results to our research sponsors and other interested parties.

Since we needed a realistic application, we decided to team with an industrial partner.
This partner would provide expertise in real-timnc command and control applications and
share the effort of implementaiion. The Alpha group would gain insight into the require-
ments of the application and of the application programmers (in terms of development and
debugging tools). In return, the industrial partner would benefit from the transfer of tech-
nology from the Archons project. Both groups would gain valuable experience in develop-
ing decentralized real-time systems.

1.2 Application Selection
Bearing in mind the objectives stated in Section 1.1, the Alpha group began the search

for a suitable application and partner. We considered a wide range of application
types-vehicle control (ship, airplane, spacecraft), process control (factory automation),
command and control (air traffic control), and spoke with several organizations (e.g.,
General Dynamics, Jet Propulsion Laboratory, IBM).

In March 1987, a group at General Dynamics approached the Archons project and indi-

cated their interest in advanced technology for future C2/BM systems. We told them of
our interest in an application for Alpha, and together settled on the idea of building a pro-
totype for a coastal air defense system inspired by the requirements of the Air Defense
Initiative (ADI)--a U.S. Air Force defense program designed to protect against airborne
attackers of the 1990's and beyond.

In the chosen scenario (described in detail in Chapter 3), the system coordinates the
defense of the northeastern United States against airborne threats approaching over the

Atlantic Ocean. The major functions of the system are to locate, identify, track and inter-
cept threats before they inflict damage. The primary threats are manned bombers,
manned cruise missile carriers, cruise missiles, and jamming devices. Available defen-
sive assets include over-the-horizon (OTH) ground-based radars, airborne early warn-

Final Technical Report

C-4 An Example Real-Time Command, Control and Battle Management Application for Alpha

ing aircraft, manned interceptors, medium-range anti-missile missiles, and point-defense
surface to air missiles (SAMs). The system uses these assets to gather data from sen-
sors, track the targets, assess their threat potential, launch weapons, and control weap-
on flight paths until the threats are destroyed. The system achieves its goal if no bomb-
ers or cruise missiles reach their targets.

1.3 Application Development
After the Archons project and General Dynamics agreed to cooperate on building an ap-

plication for Alpha, a technology development and exchange effort was initiated. The ef-
fort was carried out from April to November 1987, with approximately six months of this
time being spent on the actual system implementation.

General Dynamics brought to the effort their knowledge of real-time C2/BM applica-
tions, their implementation experience with air defense applications, their experience
with environment simulators and scenarios, their expertise in operator console and user
interface design, and their skills in prodicing software to meet industrial quality stan-
dards. The Alpha group contributed their expertise in designing distributed real-time
syste-s ,uid the Archons project's advanced technology for decentralized real-time oper-
ating systems embodied in Alpha.

Working together, personnel from the Alpha group and from General Dynamics de-
signed the scenario and specified the functions of the application system. This coopera-
tion ensured that the application scenario and implementation were reasonably represen-
tative of real-world systems, and that the system would demonstrate some of the most
important features of Alpha.

General Dynamics dedicated three full-time employees to the task of application design
and implementation during the period of the joint effort. General Dynamics implemented
the application system running under Alpha. They also designed and implemented the
experimental support environment running under UNIX. The support environment
(described in Chapter 4) includes the Scenario Simulator, the Experimental Control Con-
sole, the Operator Console, and the Communication Interface.

At CMU, four people worked full-time on the design and implementation of Alpha.
CMU provided GD with pre-release software, culminating in Alpha 0.5. They provided
advice on the proper use of the Alpha object-oriented programming model and other Al-
pha facilities, and assisted in implementing some portions of the application code. CMU
personnel also assembled a duplicate of the Archons distributed systems testbed (See
Section 2.5) at General Dynamics.

The Alpha group dedicated a fifth person to act as coordinator and liaison. The liaison
spent approximately half-time working in Pittsburgh at CMU and half-time in Fort Worth
at GD for the duration of the project (travelling between cities at two-week intervals).
Work proceeded in a loosely coupled fashion, with the Alpha group at CMU concentrating
on the operating system, and the application group at General Dynamics concentrating on
the ADSP and its support environment.

The defense system prototype and its support environment was initially demonstrated
to our research sponsors in December 1987. In March 1988 it was shown to our spon-

Final Technical Report

An Example Real-Time Command, Control and Battle Management Application for Alpha C-5

sors, DoD representatives, members of industrial technical staffs, and academic re-
searchers. Both demonstrations were well received.

1.4 Caveats
It is worth repeating that the work described in this report was directed toward a dem-

onstration that previews technology still under development. The application is realistic
in that it is representative of the kinds of processing that take place in real-world sys-
tems. Although inspired by the ADI environment, the threat, doctrine, and tactics in the
application are purely notional. Finally, the application software runs under pre-release
Alpha 0.5. This early version of the operating system lacks several features that would
further simplify the design and implementation of large distributed systems.

1.5 Report Outline
The remainder of this report describes the application in more detail and analyzes the

results of the effort. Chapter 2 provides a system context by briefly describing the Alpha
operating system and the Alpha distributed system testbed. Chapter 3 describes the ap-
plication scenario and requirements in greater detail. Chapter 4 describes the experimen-
tal support environment in which the air defense system operates. Chapter 5 provides an
intrcduction to the design of Alpha-based applications, and describes the high-level de-
sign of the ADSP. Chapter 6 describes each of the application object types, while Chap-
ter 7 outlines the application threads. Chapter 8 explores the key technology issues of
time-driven resource management and system survivability in the context of the ADSP.
Finally, Chapter 9, evaluates our experience with the application and outlines ongoing Al-
pha research and development. An appendix at the end of the report provides a sample of
the actual application code.

Final Technical Report

C-6 An Example Real-Time Command, Control and Battle Management Application for Alpha

2 The Alpha Operating System
Alpha is an operating system designed to support complex, mission-oriented, real-time

applications. These applications often have requirements that are very different from
those usually considered by operating system designers. In particular, they require new
types of support for distribution, real-time resource management, and system survivabili-
ty and adaptability. Unlike other systems, Alpha has been crafted "from the ground up"
to support the design and operation of such demanding applications in a reliable and main-
tainable manner.

Alpha is a decentralized operating system. It is oriented towards systems that may
have anywhere from one to 100 physically dispersed processing nodes contributing to a
single application or mission. By logically integrating these nodes into a single computer
system, Alpha provides transparent access to distributed resources, and offers unified re-
source management (not just limited resource sharing) across node boundaries. By elim-
inating centralized facilities, Alpha allows applications to obtain the availability and sur-
vivability benefits of physical distribution without encountering the difficult problems as-
sociated with conventional distributed programming.

In addition to providing uniform resource management across node boundaries, Alpha
supports time-driven management of vital resources such as processor cycles, communi-
cation access, and physical memory. Unlike static or synchronous scheduling techniques,
Alpha's method of time-driven resource management supports supervisory-level real-
time systems that may be dominated by dynamic and aperiodic activities with critical
time constraints.

The prototype implementation (Release 1) of Alpha was created at CMU after more
than ten years of experience with and research into the requirements of large, distributed,
real-time systems. Further research and development continues at Concurrent Comput-
er Corporation where Releases 2 and 3 of Alpha are being designed and implemented.

2.1 Alpha Programming Model
The Alpha programming model is based on the concepts of objects and threads. This

model differs from process-based models by distinguishing data and executable code
(objects) from the points of control that "animate" the code (threads). By making this
distinction, Alpha is able to offer greater concurrency, better data encapsulation and more
uniform resource management.

In Alpha, objects can contain both code and data. At the highest level of abstraction,
objects correspond closely to abstract data types. Each object has a well-defined inter-
face and is accessible only through the entry points or operations which it defines. Figure
1 shows a sample object with three operations (Initialize, Insert, and Remove) that de-
fine its external interface. Alpha enforces the object interface by placing every object in a
separate, hardware-protected address space, and by controlling entry into objects with
an operation invocation mechanism.

Unlike some object-oriented systems, objects in Alpha are passive. For computation
to occur in an object, there must be one or more threads active in it. Alpha threads are
the schedulable points of control that actually execute instructions. Intuitively, they are
similar to "processes" in other systems. Each thread consists of an execution context

Final Technical Report

An Example Real-Time Command, Control and Battle Management Application for Alpha C-7

Queue

Initialize Operation
Code

/ eue

thtlns sei dOperation s vs
CoadenDsaaeDat)

emoe r Operation
Code

Utiliy -Additional
Routine Data/;//
Code Dt

Figure 1: Example Object

that includes thread-specific data (e.g., register values and stack informnation) and a set
of attributes. The thread attributes include informauon, such as time constraints and reli-
ability requirements, that is used by the system resource managers (e.g., to ensure that
deadlines are met).

When a thread is created, it begins executing at an application-selected operation in a
specified object. Once running, it can travel to other objects by invoking operations on
them. Alpha's threads are unique in that they are not constrained to remain on a single
node. If an operation is invoked on an object at a different node, the thread transparently
travels to the remote node, carrying its thread attributes with it. These attributes allow
resources to be managed consistently throughout the entire decentralized computer.

Alpha does not artificially limit the level of concurrency within objects. At any given
time, there may be zero, one, or several threads active in a particular object. The operat-
ing system provides concurrency control mechanisms such as locks and semaphores that
the programmer can use to synchronize thread execution when required by the applica-
tion.

Object-oriented programming offers many benefits including simplified design, improved
modularity, and increased reusability of software components. Several books, such as
[Cox 86], discuss the general merits of object-based systems. Alpha's object/thread
model has specific advantages that make it well-suited for distributed, real-time sys-
tems. A technical report on the requirements and rationale for Alpha [Northcutt 88a] ex-
plains these advantages in greater detail.

Final Technical Report

C-8 An Example Real-Time Command, Control and Battle Management Application for Alpha

2.2 Time-Driven Resource Management
One of Alpha's primary goals is to support highly complex and dynamic real-time appli-

cations. A major way that Alpha supports such applications is by resolving contention
for system resources in a global, dynamic, and (most importantly) time-driven manner.
Large real-time systems often consist of se',eral roncurrent activities, each of which may
have critical timeliness requirements. In Alpha, these activities are embodied as
threads. The thread abstraction not only serves as a means of capturing the notion of ap-
plication activities in a system context, but provides a mechanism for notifying the operat-
ing system of any application-specific time constraints. Activities that have timeliness
requirements specify those constraints dynamically as part of the attribute information
that accompanies a thread.

2.2.1 Time-Value Functions

An essential prerequisite for being able to satisfy an application's timeliness require-
ments is providing a way for the system designer to express those requirements both
concisely and accurately. In Alpha, time constraints are specified using the concept of
time-value functions-functions that express the time-dependent value to the system of
completing a specific phase of a computation [Jensen 75]. Time-value functions allow the
designer to express requirements with much greater fidelity than the simple priorities or
hard deadlines that other systems employ. Time-value functions are based on the idea
that completing a computation has a certain value to the system. In real-time applica-
tions, this completion value often varies with time. For example, the classical concept of
a hard deadline describes a task that has a constant positive completion value before its
deadline, and zero value after the deadline (see Figure 2). Not all real-time activities
have hard deadlines however. Other tasks may have critical times when their completion
is most valuable, but may have non-zero completion value even after that time has
passed. Such constraints are often known as "soft" time constraints since they do not
have a single time, or hard deadline, when the completion value instantaneously drops to
zero. It is also possible that some tasks are less valuable if completed too quickly (e.g.,
when their input data improves in quality as time progresses).

V Hard Deadline V Soft Time-Constraint
a a

U U

tdeadline Time tcritical Time

Figure 2: Example Time-Value Functions

Final Technical Report

An Example Real-Time Command, Control and Battle Management Application for Alpha C-9

Due to the dynamic nature of Alpha's intended applications, Alpha allows time con-

straints to be computed and specified at run-time. This allows applications to rc.a#,t to

changes in the available resources or the environment. Several technical reports

[Northcutt 88b] [Shipman 88] explain the features and usage of time-value functions

more thoroughly.

2.2.2 Best-Effort Resource Management

Simply being able to express an application's timeliness requirements to the system

would not be very useful if there were no way of utilizing the information to manage sys-

tem resources. Alpha supports a wide range of scheduling policies that may use all, part,

or none of this information. One particular class of policies is being developed as part of

the Alpha group's research into advanced real-time systems. This class of policies uses

a technique known as best-effort resource management to satisfy the application time

constraints whenever possible, and to facilitate graceful degradation (as defined by the

application) when resource demands exceed the available supply. Best-effort policies

evaluate the time-value functions of all contending threads collectively. If sufficient re-

sources are available, the threads are scheduled in order of their critical times (the time

after which the value of completing the activity diminishes). If the system is overloaded,

threads are (temporarily) discarded from the schedule until enough resources are avail-

able for the activities that are scheduled to satisfy their time constraints.

Several policies may be used for deciding which threads to remove. The load reduction

policy used for the ADSP attempts to maximize the total value accrued to the system

during overloads. The value of completing time-critical tasks is specified by the applica-

tion designer by means of time-value functions. When resource demands are too great,
the best-effort policies ensure that time and effort are spent on activities that are poten-

tially the most valuable. Equally as important, the policies ensure that resources are not
wasted on activities that have little or no chance of making a positive contribution to the

application.

Alpha's mechanisms for time-driven resource management are described more thor-

oughly in many of the technical reports listed in the references. More details on the best-

effort algorithms are available in [Locke 86], [Clark 88] and others.

2.3 Support for Survivability

The mission-oriented systems ,or which Alpha is designed often need to continue oper-

ating even if parts of the computer system fail. Alpha provides many facilities that sup-

port the construction of systems that can survive and adapt to node failures and other

sudden or gradual changes in the environment. These facilities are complementary to, but

independent of, hardware mechanisms that enhance the reliability oi fault tolerance of the

computer hardware. Alpha does not impose policies on how failures should be handled.

Instead, the operating system provides mechanisms that system designers can use sepa-

rately or in concert to construct a system that includes the performance vs. survivability

trade-offs that are appropriate for the application. The survivability tools that Alpha pro-
vides include methods for containing the effects of faults, mechanisms for handling excep-
tions in a uniform manner, facilities for ensuring the availability and consistency of vital

data and services, and mechanisms for ensuring graceful degradation and the timely dis-
tribution of resources under overload conditions.

Final Technical Report

C-1O An Example Real-Time Command, Control and Battle Management Application for Alpha

When hardware or software faults occur, it is important to contain their effects insofar
as possible. Alpha's object-based model limits fault propagation by placing each object
in a separate (hardware-enforced) address space, and by separating software compo-
nents into system-enforced protection domains. These protection domains are defined
using a capability mechanism that controls interactions between objects. Threads are
only allowed to invoke operations on objects for which they have explicit capabilities
(which cannot be forged). This protection of data and control over thread propagation
helps the system designer prevent faults from spreading unchecked throughout the sys-
tem.

For detecting failures, Alpha provides a uniform exception handling mechanism that
supports a wide range of user- and system-defined events. Because of the distributed
nature of Alpha, processing nodes may fail while threads span nodes. This means both
that invocations can fail because an object no longer exists and that portions of a compu-
tation can become detached (or orphaned) because a thread spans a node that fails. Al-
pha provides mechanisms for indicating the failure of operation invocations and for detect-
ing and eliminating orphan threads. Alpha also supports the notion of time-constraint ex-
ceptions that occur when a computation cannot meet its timeliness requirements (e.g.,
because of a system overload). Since timeliness requirements are considered part of the
correctness requirements for the system, such exceptions may be as vital as those
caused by node failures. In Alpha, both types of exceptions are handled by the same
mechanisms.

In order to respond effectively when a failure does occur, vital services must remain
available and vital data must remain both available and (in some cases) consistent. The
Alpha kernel has built-in functionality that supports object replication and atomic transac-
tion mechanisms. By using exclusive replication (replication without data consistency
between replicas), objects that provide vital services can be made available even if one
or more of the replicas are destroyed. Inclusive object replication provides a method of
ensuring that essential data will remain available, even after a node failure. By using the
mechanisms that support atomic transactions, one can ensure the consistent behavior of
actions, and can perform atomic, permanent, and serializable updates on data. The pro-
gramining model technical report [Northcutt 88b] explains these Alpha robustness facili-
ties more completely.

When failures occur in real-time systems, it is not sufficient to ensure that data and
services remain available. It is also essential that the most vital tasks continue to exe-
cute within their time constraints. As described in the previous section, Alpha's time-
driven resource management techniques are unique in their support of real-time systems
where time constraints and available resources may change dynamically. In particular,
the best-effort scheduling policies automatically adjust to overload conditions by ensur-
ing that the most valuable threads continue to satisfy their timeliness requirements. This
intelligent load shedding allows application and system performance to degrade gracefully
in small increments. As with Alpha's other survivability mechanisms, the application de-
signer controls (through time constraint specifications) how the system will respond to
transient or permanent overloads.

Almost all of Alpha's mechanisms and services have been designed to facilitate the
construction of survivable systems. The programming model, exception mechanism, and

Final Technical Report

An Example Real-Time Command, Control and Battle Management Application for Alpha C-11

resource management techniques are carefully integrated so that techniques such as ob-
ject replication and atomic transactions fit cleanly into the system. The result is an oper-
ating system that makes it easier for application builders to design systems that operate
correctly under stress. As an added benefit, the same Alpha facilities that allow a sys-
tem to adapt to failures also allow it to evolve as requirements change. This evolvability
ensures that Alpha-based systems will not only be able to survive, but will be able to
adapt to changing environments and scenarios-potentially increasing the useful lifetime
of the systems while reducing the cost of system enhancements.

2.4 Pre-Release Alpha Version 0.5
The Alpha application effort was begun while the operating system was still at an early

stage of development. When GD began implementing the application, the Alpha group at
CMU was working on pre-release 0.2 of the operating system. The final version of the
ADSP runs under pre-release 0.5 (and later) of Alpha.

Pre-release Alpha 0.5 supports most of the kemel-level functionality (e.g., objects,
threads, local and remote invocations, concurrency control, access control, and thread ex-
ceptions). In addition, an initial implementation of a best-effort algorithm is used for
scheduling the application processor. However, the 0.5 system does not support many of
the reliability mechanisms that would have simplified the implementation of the ADSP.
In particular, the atomic transaction and inclusive replication facilities were not avail-

able.*

Pre-release 0.5 of Alpha also lacks many of the system-level services that are envi-
sioned to be part of later implementations. Specifically, there are no user-level facilities
for managing explicitly distributed services. Under most circumstances, distribution
transparency is desirable; however, there are a few cases where the application prefers
to manage distributed resources explicitly. It would be preferable to have the operating
system provide services for managing these resources. Since Alpha 0.5 does not have a
distributed systems services manager, an application-specific version was developed for
the air defense system.

2.5 The Alpha Distributed Computer System Testbed
Alpha 0.5 runs on a special testbed that is designed to support distributed systems ex-

periments. There are two copies of the Alpha prototype testbed--one at CMU, and one
at GD. The sections below give a brief description of the testbed facility. A complete de-
scription of the design and construction of the testbed is given in The Alpha Distributed
Computer System Testbed [Northcutt 88c].

The testbed facility at GD consists of two components---the Distributed System Test-
bed and the Development and Control System (See Figure 3). The Distributed System
Testbed is the actual execution environment for the Alpha operating system and its appli-
cations. The Development and Control System is used for software development and for
experimental monitoring and control.

A specialized version of replication support was implemented for the ADSP; however, it was not available
in 'a- to be included as part of the public demonstration.

Final Technical Report

C-12 An Example Real-Time Command, Control and Battle Management Application for Alpha

Development and Control System

I Is
Development System Ethernet

Distributed System Testbed

Console Serial Lines

,I I ,
Testbed Ethernet k

Figure 3: Alpha Distributed Computer System Testbed Structure

2.5.1 Distributed System Testbed
Alpha is designed to operate in a distributed environment containing one to 100 comput-

ing nodes connected by a local communications network. The distributed system testbed
at GD contains four processing nodes connected by an Ethernet. An instance of the Al-
pha kernel executes on each of the nodes. The collection of nodes on which Alpha is run-
ning at any particular time constitutes the decentralized computer system on which appli-
cations execute.

The CMU implementation of Alpha has been designed to allow experimentation with
hardware concurrency within the operating system. To support this type of experimenta-
tion, each node in the Alpha testbed contains multiple dedicated-function processors
(see Figure 4). The Application Processor (AP) is a slightly-modified Sun Microsys-
tems 2.0 CPU board that executes all application code as well as the Alpha kernel prop-
er. The AP has 2 megabytes of local memory. The Scheduling Processor (SP) and Com-
munications Processor (CP) are both (slightly-modified) Sun 1.5 CPU boards, each with

Final Technical Report

An Example Real-Time Command, Control and Battle Management Application for Alpha C-13

Application Shared Schieduling
Precessor MPemocry Proeemo

(Multi bus)

EthernetCvmmznicadon
Controller Processor

Node

Global Bus Tq.

(Ethernet)

Figure 4: Alpha Testbed Node Architecture

256 kilobytes of memory. The processors communicate over a Multibus I backplane. In
addition to the processors, each node contains a Sun Ethernet controller and 256 kilo-
bytes of shared Multibus memory. A technical report [Northcutt 88d] on the Alpha ker-
nel describes how each of these components is used by Alpha.

2.5.2 Development and Control System

The Development and Control System consists of several Sun-3 and Sun-4 worksta-
tions running Sun's version of the UNIX operating system. The workstations are con-
nected by an Ethernet and use NFS to share files between machines. The Alpha group
at CMU has implemented several tools that allow software developers to write and com-
pile Alpha and Alpha-based applications in the UNIX environment. For a complete de-
scription of the Alpha software development tools, refer to the Programming Utilities
technical report [Northcutt 88e).

The Development and Control System is also used for experimental monitoring and con-
trol. One of the development workstations serves as a gateway to the Distributed Sys-
tem Testbed. The gateway machine has two Ethernet controllers---one connected to the
development system network and the other connected to the testbed network. This
shared network link serves two purposes. First, it allows program images to be down-
loaded to the testbed from the development machines. Second, it permits run-time moni-
toring of and communication with the application while Alpha is running.

The gateway machine also has a serial line multiplexer connected to the console lines
of each of the nodes in the Distributed System Testbed. This connection allows develop-
ers to control and monitor the testbed nodes remotely from the development worksta-
tions. Software developed jointly by CMU and GD provides window-based remote ac-
cess to the testbed console lines.

Final Technical Report

C-14 An Example Real-Time Command, Control and Battle Management Application for Alpha

3 Application Requirements
In order to learn as much as possible from the application effort, we needed to start

with a sufficiently realistic and demanding set of system requirements. The first meet-
ings between the Alpha group and General Dynamics personnel were dedicated to choos-
ing and tailoring the scenario. The goal was to develop an application that was represen-
tative of real-time command and control systems, and that was suitable for use as an op-
erating sytem techmology d..moristration.

The partnership with GD was vital in designing a realistic application. The team from
GD was experienced in the design and implementation of air defense systems, and was
familiar with the requirements of contemporary and future C2/BM applications. They had
previously developed scenario simulations and user interfaces for similar applications.
We relied mainly on their expertise to ensure that the chosen scenario was sufficiently
realistic. When necessary, experts from other groups at GD were consulted to answer
specific questions about system requirements.

The Alpha group wanted to highlight three key areas where the operating system pro-
vides unique support--decentralized computing, time-driven scheduling, and system sur-
vivability. Since proper handling of these areas often becomes more critical in larger sys-
tems, the "best" way to demonstrate the support would have been to construct a com-
plete system including every conceivable activity. However, the complexity of large
systems tends to obscure the relationship between a cause and its effects, making visual
demonstrations difficult. Since the system had to be explained and demonstrated in a
short, one-hour briefing, we needed easily-understood, highly-visible results. In addi-
tion, the scope of the effort was limited since only four months had been scheduled for the
implementation of the entire system.

By the time the design meetings were completed (May 1987), we had chosen an air de-
fense application and a set of requirements. We reduced the scope of -de implementation
effort by using simple mission planning algorithms and by partitioning functionality be-
tween the ADSP and the simulated environment.

The remainder of this chapter describes the scenario and the application requirements.

3.1 Scenario Description
The application scenario resembles a future coastal air defense environment. The pri-

mary purpose of the system is to coordinate the defense of the United States against air-
borne threats approaching over the Atlantic Ocean. Although inspired by the projected
ADI environment, the details of the scenario are notional.

The application setting is the northeast United States air defense zone. Airborne, at-
mospheric threats approach the eastern seaboard at varying altitudes and velocities. The
battle management system must use its assets to detect, track, and destroy the threats
before they breach the integrity of the continental U.S.

The scenario assumes a wartime environment where approaching foreign craft are as-
sumed hostile as soon as they are identified. The threats follow irregular flight paths and
may change course at any time. The specific threats defined by the scenario are:

Final Technical Report

An Example Real-Time Command, Control and Battle Management Application for Alpha C-15

" manned bombers,
" manned cruise missile carriers,

" cruise missiles, and
• radar jammers.

Bombers and cruise missile carriers are large and relatively slow. They typically travel
at altitudes where they can be detected at long range. In contrast, cruise missiles travel
at high speeds and maneuver at low altitudes where they are difficult to detect with
ground-based radar. The jamming devices constitute a secondary threat and have flight
characteristics similar to the missiles.

The system identifies and tracks the hostile craft using sensor and reconnaissance facil-
ities that include:

• over-the-horizon (OTH), ground-based radars,
" medium-range, coastal radar sites, and
• airborne early warning aircraft (e.g., AWACS).

The battle management system has three types of weapons available to intercept ap-
proaching threats. These weapons are:

* manned interceptors,
• medium-range guided missiles, and
* point-defense, surface-to-air missiles (SAMs).

The manned interceptors are fighter aircraft armed with heat-seeking air-to-air missiles.
Guided missiles are faster than manned interceptors and have automated terminal guid-
ance. However, like manned fighters, they require external guidance until they are within
range of their target. SAM's are available as a last-resort coastal defense. They have
very limited range and must be aimed and activated by the ADSP.

The scenario does not define absolute performance characteristics for the threats, sen-
sors, or weapon systems. In most cases, experiments were carried out using capabilities
that were intended to represent a late-1990's environment. However, no attempt was
made to guarantee the realism of the numbers used for altitudes, speeds, radar ranges,
and so forth. Instead, emphasis was placed on the aspects of the scenario that define the
types of activities the system must perform and the requirements it must fulfill. The fol-
lowing sections concentrate on these requirements.

3.2 Application Processing Requirements
The primary requirement of the air defense system is to keep hostile targets from enter-

ing the airspace of the continental U.S. The activities required to achieve this goal can be
classified into three main areas: tracking, mission planning, and weapon systems control.
At this high level, these functions are similar to those found in many C2/BM applications.
The following sections detail the application processing requirements in each of these ar-
eas. Figure 5 outlines their basic functionality.

Final Technical Report

C-16 An Example Real-Time Command, Control and Battle Management Application for Alpha

Tracking

Gathe & Fuse Sensor Input _Update Track Database

i Correiate Radar Plots with Maintain Track Database
Track Database 1 st (Housekeeping) i

Mission la m stipa

t Identify New Tracks Assign Weapons s

Assess Threat Potential 1IManage Weapon Systems
r t of Hostile Tracks D iatabase.

Weapn Systems Control

Launch Weapons i m Aim & Launch SAMs

I Calculate & Transmit 1 Activate SAM
Weapons Guidance JDefense Systems j

Figure 5: High-Level System Functions

3.2.1 Tracking

The first requirement of the air defense system is that it be able to provide information
about the aircraft and other airborne platforms in the area of interest. The system needs
to maintain a tracking database that contains position, velocity, and identity information
for each target in the system. The database should also contain information about posi-
tion histories to aid in track visualization and piot correlation.

To maintain the tracking database, the system must collect data from various sensor
systems. This information must be fused into radar reports that contain the position, alti-
tude, and identity (if known) of each object detected. These fused reports should then be
transmitted to the other tracking functions for incorporation into the database.

When a sensor report is received, it must be correlated with previous information to de-
term-ine whether or not the report is associated with a known flight path (or track). If so,
the associated track information must be updated. If the report does not correlate with an

Final Technical Report

An Erample Real-Time Command, Controi and Battle Management Application for Alpha C-1 7

existing track, the data should be entered in the database as an uncorrelated report. If
subsequent radar plots match with the uncorrelated report, a new track entry should be
created and the mission planning functions should be alerted of its existence.

There is also a certain amount of tracking database maintenance that must be per-
formed to ensure that stale information does not cause errors in tracking or target identifi-
cation. The system must periodically scan the tracking information, purging old tracks
and uncorrelated reports that have not been updated within a certain time.

3.2.2 Mission Planning

When the tracking functions discover a new track, the mission planning components
identify the track and determine whether or not it is a threat. Track identification may use
such information as track origin (did it originate from a commercial U.S. airport?), velocity
(is it too fast to be a bomber?), and identify-friend-or-foe (1FF) transponder information.

If the track represents a threat, its threat potential must be evaluated. This assess-

ment is based on such considerations as threat type (e.g., bomber or cruise missile), po-
sition (e.g., distance from the coast), speed, and direction. Threats become more serious
as they approach the coastline and interior of the U.S.

The system must determine the best choice of weapon system and locate the base

nearest the target where the system is available. Defensive weapon assets include
manned interceptors (e.g., F-15, F-16), long-range guided missiles, and point-defense
surface-to-air missiles. The weapons pairing decision is based on such considerations
as the estimated intercept time for each type of weapon. Once chosen, the weapon must
be allocated and passed to the weapon systems control functions for launching and in-
flight control.

The mission planning component must also maintain situation assessment and re-

source availability information. In particular, the system must maintain a database con-
taining, for each base, its location and its current inventory of weapons. It is also impor-
tant to maintain a listing of all active target/weapon pairings.

In a real battle management system, the mission planning function would likely be car-

ried out by a group of people using information provided by sensor data and intelligence
sources. Since the ADSP is designed to be able to run without human intervention, each
of the mission planning functions is carried out by the computer using simple heuristics.
In a more advanced demonstration, these heuristics could be replaced by expert systems
designed to operate in concert with a human advisor.

3.2.3 Weapon Systems Control

When a weapon and launch site have been chosen, the actual launch command must be

issued along with initial guidance information. Once the interceptor is in the air, its
progress must be monitored, and its course frequently updated to compensate for chang-
es in the direction of the target and for navigational inaccuracies. If for some reason a
weapon does not reach its designated target (e.g., it is destroyed en route), the mission
planning system must be notified so that replacement weapons can be allocated. In addi-
tion, for manned interceptors, the interceptors must be guided back to an airbase after
their encounter with the target.

Final Technical Report

C-18 An Example Real-Time Command, Control and Battle Management Application for Alpha

The weapons control functions are also responsible for the operation of the terminal de-

fense system (coastal SAMs). The coastline must be periodically scanned for hostile
craft that have penetrated the outer defense systems. When threatening tracks are dis-
covered, a SAM site must be chosen and activated to intercept the target.

The application requirements make several simplifying assumptions with regard to
weapon systems. In particular, weapons are presumed to have perfect kill ratios. That
is, if a weapon is successfully launched and guided to within a set distance of its target, it
is assumed to destroy the target. Although it would be trivial to model a kill ratio less
than one, the behavior of the system would be more difficult to understand in a visual
demonstration (since one could not tell if an intercept failed because of an Alpha policy
decision or a random miss probability.)

3.3 Appication Timeliness Requirements
The different activities that compose the application have a wide variety of timeliness

requirements. The majority of the application tasks are aperiodic and have soft time con-

straints that vary with time and external inputs. Other activities are roughly periodic
with soft time constraints that are fixed at compile time. Still others are aperiodic with
hard deadlines. In addition to timeliness concerns, each of these tasks have different rel-
ative importances that may change dynamically. Three typical classes of timeliness re-
quirements are represented by the plot correlation activity, the weapons guidance activi-
ties, and the SAM launch sequence. These requirements are outlined in the remainder of
this section. The time-value functions corresponding to these requirements are dis-
cussed in Section 8.2.

3.3.1 Radar Plot Correlation

Radar plot reports arrive from the sensor system in frames. The data for each frame
should be correlated with the tracking database before the next frame arrives. Since
frames arrive at roughly periodic (six second) intervals, the plot correlation activity is ap-

proximately periodic with a six second deadline. However, the task is not truly periodic
in the classical sense. In particular, the task is initiated by an external event (the arrival
of a new frame) instead of being activated periodically. Also, plot correlation does not
have a hard deadline. If the processing of a frame exceeds the six second time, it is still
important to complete the processing of that frame. Only if the processing is not complet-
ed in two frame times should the attempt be aborted.

Because of the fundamental importance of tracking to the application, the plot correla-

tion activity has one of the highest task importances in the system. The track database
maintenance activity is also roughly periodic with a six second frame time. In contrast,
however, the maintenance activity has a very low relative value. This example clearly
demonstrates how a task's importance can be independent of its critical time.

3.3.2 Weapons Guidance

Weapons guidance is one of the most time-consuming activities in the system. Each

guidance calculation requires a significant amount of processing time, and several inter-

ceptors may require guidance during a short interval. For the air defense system, weap-
on headings should be updated when approximately one fourth of the predicted time-to-
intercept has elapsed. Since the time-to-intercept depends on the distance between the

Final Technical Report

An Example Real-Time Command, Control and Battle Management Application for Alpha C-19

interceptor and its assigned threat, the guidance activity is fundamentally aperiodic and
dynamic. It is impossible tc know the critical times when the application is compiled.

The critical time for guidance updates indicates the time when course corrections are
preferred. If excess resources are available, additional guidance updates may be issued
(potentially decreasing the intercept time). Likewise, if the system is overloaded, guid-
ance for interceptors that are still far from their targets can be delayed without a signifi-
cant penalty. This flexibility is expressed by a variable "hardness" of the guidance time-
liness requirements. When the time-to-intercept is large, the time constraint can be fair-
ly soft since using slightly outdated tracking information will not significantly affect the
intercept. However, as the intercept time nears, it becomes increasingly important to
complete the course update prior to the critical time.

The importance of the guidance activities also varies. The value of completing an inter-
cept is tied directly to the threat potential of the target. In the prototype system, the
threat potential is based primarily on distance to the coastline and the type of threat. As
with the plot correlation activity, the importance of a guidance task is independent of its
critical time.

3.3.3 SAM Control

The weapon control program for the surface-to-air missiles is one of the few activities
in the system with a strict hard deadline. The launch sequence models a system using an
aim-aim-fire algorithm-where two successive sightings are used to aim the missile be-
fore firing. The aim-aim-fire sequence must be completed by its deadline or the launch is
aborted and a new launch sequence initiated. In addition, a successful launch must be
made before the threat leaves the range of the SAM battery.

Since the coastal SAMs are the final line of defense in the system, a failure in the
launch sequence will mean that the battle management system has failed to meet is pri-
mary objective. Consequently, the SAM control tasks have the highest value to the sys-
tem when they are active.

It is interesting to note that although the SAM control tasks are among the few activi-
ties with hard deadlines, they are strictly aperiodic. The SAM batteries are only activat-
ed when a hostile craft approaches within a certain distance of the coastline.

3.4 Application Survivability Requirements
One of the fundamental constraints of the air defense application is that the system

must continue to fulfill its mission requirements even if one or more of the processing
nodes fails. For the air defense application, fulfilling the mission means that coastal in-
tegrity is preserved even after nodes fail. In addition, the system must be capable of re-
integrating nodes that have been repaired after a failure.

In order to respond when failures occur, the system must ensure that essential data re-
mains available after a node failure. In particular, essential repositories such as the
tracking database and the resource (weapons) database must survive failures so that
their data will continue to be available. Not all data must be saved however. For exam-
ple, it is acceptable for a single frame of radar reports to be lost when a node fails. Since
radar reports will continue to arrive, the lost reports will quickly be replaced by fresh
ones.

Final Technical Report

C-20 An Example Real-Time Command, Control and Battle Management Application for Alpha

In addition to mission data, essential services must also continue to be available after
failures. All vital tracking, mission planning, and weapon systems control functions must
be obtainable after a node has failed. In many cases, it is not necessary to replicate the
functionality so long as new service providers can be created dynamically to replace
those that are lost.

Finally, it is important that the system not "forget" any important activities that were
in progress when a node failed. In particular, weapons that were being guided by a lost
node must have new guidance activities created on the nodes that remain available. Oth-
er system activities, such as database maintenance, also need to be restarted if they are
prematurely terminated.

Ultimately, the real survivability requirements are that, as much as possible, the sys-
tem continue to satisfy the processing and timeliness requirements outlined in the previ-
ous sections. In some cases, the combination of limited resources and additional excep-
tion processing after a failure might lead to system overloads. In such circumstances, the
system should reconfigure itself or shed less vital activities until the situation is brought
under control. Because the defense application operates in a highly dynamic environ-
ment, it would be impossible to construct a rigid system that could adapt to all of the fail-
ure scenarios. By designing a system that can respond flexibly, it is possible to continue
satisfying mission requirements under a wide range of load and failure conditions.

Final Technical Report

An Example Real-Tme Command, Control and Battle Management Application for Alpha C-21

4 Experimental Environment
The high-level architecture of the experimental system is shown in Figure 6. The sys-

tem is divided into two major sections--the air defense system prototype (ADSP) and
the experimental support environment. The ADSP runs under Alpha on the distributed
computer system testbed. It implements most of the functions of a real air defense sys-
tem including the tracking, mission planning, and weapon systems control functions out-
lined in the previous chapter. The remainder of the system supplies a simulated execu-
tion environment for the air defense system and provides monitoring and control functions
for a human experimenter. These support functions run on Sun workstations under
UNIX. The support environment is divided into several components-the Scenario Simu-
lator, the Experimental Control Console, the Operator Console, and the Communication
Interf? :-.

As much as possible, the design team tried to preserve the division between the pro-
totype system and its support environment. The goal was not to simulate an air defense
system, but to build a (limited-function) air defense system prototype that operated in a
simulated environment. Chapters 5, 6, 7, and 8 describe the design and operation of the
ADSP. The remainder of this chapter describes the environment in which it operates.

4.1 Scenario Simulator
The Scenario Simulator is responsible for providing the environment in which the ADSP

operates. It is based on a validated simulator developed by GD for an earlier project.
The program simulates the movement of all hostile and friendly tracks and implements
the radar coverage model that determines which tracks are visible to the defense sys-
tem. It is also responsible for detecting "kills" that occur when a-i interceptor reaches
its target. Every six seconds, the simulator computes new positions and velocities for
the aircraft based on flight paths and guidance information. For those tracks that are visi-
ble, it transmits radar reports to the ADSP. Each of the reports contains the position, ve-
locity, and any available identification information for the target. The actual position cal-
culations performed by the simulator vary depending on the type of track.

Hostile flight paths are loaded into the simulator during system start-up. Right paths
are stored as a list of course changes. Each course change contains an activation time,
an initial position, and a velocity vector. For each update, if the current simulation time
equals the activation time for the next course change, the new position and velocity are
set to the stored value. By storing both position and velocity for the course change, the
simulator avoids cumulative round-off effects and ensures that hostile craft will follow
their intended path. If a course change is not scheduled, the new position is computed
based on the previous position and velocity.

For friendly interceptors, guided rmssiles, and radar aircraft, launch and guidance com-
mands are received from the ADSP while the simulator is running. During each simulator
update, new positions are computed for existing friendly tracks. The new positions are
based on the previous position and velocity. After computing the new positions, any
guidance updates are applied to adjust the speed and heading of the track. Finally,
launch commands are processed by adding new interceptors, missiles, or AWACS to the
simulation with the initial positions and velocities given in the launch commands.

Final Technical Report

C-22 An Example Real-Time Command, Control and Battle Management Application for Alpha

Experimental Operator
Control Console Console

- . Scenario Simulator &
, Communication Interface

Alpha Testbed:
Air Defense System Prototype

iIIV

Figure 6: Overall System Architecture

Final Technical Report

An Example Real-Time Command, Control and Battle Management Application for Alpha C- ?3

After computing new positions and velocities for each track, the simulator applies a ra-
dar coverage model to determine which tracks are visible to the defense system. Each
track position is checked to determine if it is visible to any of the radar sites (either
ground-based or airborne). Each radar site has a cone-shaped coverage where the range
of the radar increases with altitude. The simulator is implemented so that only one radar
report is issued for any track in the system. This restriction means that no fusion pro-
cessing is required in the ADSP. The design team chose not to implement sensor fusion
for a variety of reasons. Chief among these reasons was the limited implementation time
available.

In addition to course calculations, the simulator is responsible for detecting successful
intercepts or "kills." When an interceptor or missile approaches within its kill range of a
hostile craft, the enemy target is removed from the simulation. If a missile makes the kill
it is also removed. The simulator does not issue any form of message when a kill hap-
pens. It is the responsibility of the ADSP to assess that a kill has occurred and initiate
activities such as directing manned interceptors back to their airbases.

4.2 Operator Console
The Operator Console is analogous to the actual control console that a C2/BM system

operator would use. It provides an air situation display including a map, track informa-
tion, resource locations, radar coverage, and other information useful in mission planning
and control. Button panels allow the user to adjust the type and detail of information dis-
played. The console allows the operator to request detailed information about particular
tracks or target/weapon pairings. In a real system, the operator's console would be high-
ly interactive-requiring the user to input a variety of weapons assignment and control
cc "mands. For this application effort, the battle management system operates autono-
mously. The only commands (other than display control commands) issued by the human
operator are those to launch airborne early warning aircraft.

The Operator Console receives display lists from the ADSP and converts the lists into
an air situation display. This type of connection is similar to those used in many existing
command and control systems. Ideally, however, we would have preferred to drive the
Operator Console directly from one of the Alpha processing nodes. Unfortunately, the
distributed system testbed does not support high-resolution color graphics, so it was
necessary to implement the console on a Sun-3 workstation.

The display itself is based on the latest user interface technology and uses multiple dis-
play windows and virtual control panels that are activated by a "mouse" pointing device.
The display is implemented under SunView(t) using SunCORE(In) graphics primitives.
A sample screen snapshot is shown in Figure 7. The actual display uses color to en-
hance the contrast between different types of tracks and geographical features.

The Operator Console provides a variety of commands that control the type of informa-
tion shown on the air situation display. Individual types of tracks can be turned "ON" or
"OFF"' to reduce display clutter. The following track types can be individually selected:

Final Technical Report

C-24 An Example Real-Time Command, Control and Battle Management Applicationfor Alpha

i ! :i~i:: , I " ")=.J, u;: :: .,.

<. :: ..: / : - - ? / . !iIi!ii~ Iii !H
.- ' ~ \A88

.* "'X
,.

. . .

Aftl

Unknownnk Trackyrs HsieJmes Finl WC

abou h 0 OifrN tracs a" ptculr he u se.r, cNan hoewhte roodipah

D- Ah 311 C..% D'- Od ONA OF

trak cI, ra d Rck(poso Hnoi Minfoaion), poin Missoies, n arn

ine Oietatindve racks Hostile Bobet riendFyiennterceptomisesprs u
Th. n l he operator to aoso howi adu information is dspbyed

ing). ~~ igr 7:e oeaocnalo o perin adtiora Consotole Dipayotpriuarcsb e

lecting them with the mouse. The system will display detailed identification and tracking

information as well as pairing information and predicted intercept paths for the selected

track(s).

In addition to track information, the air situation display can present a variety of tactical

data. Options allow the user to display miitary bases, major cities, SAM sites, and ra-

dar sites. For the radar sites, the system will display radar coverage rings for altitudes

of 1000, 10000, and 25000 feet. The operator may place and selectively display reference

Final Technical Report

An Example Real-Time Command, Control and Battle Management Application for Alpha C-25

Sitil ll/: Glv~'apfrny £Epontson: [21 1 16

SAP RZ1'6 SPECIA. POZII RtADAR 25Ue RADAR 1000 b Lf ZONE IRBASES 8Mi-

Sa. sT$ CAP PtOW RADAA ii@@ RADAR ADZ LIM CUTtS

... r.. \ ..- -"N-

-- .4 L> G.AA W, " & m

I , .I\

:7 If~i~iLH50 1Figue 8: p'ri nta t '
/: , \., /

points to aid visualization. Finally, the entire situation display can be expanded around
arbitrary locations and displayed at magnification factors from 1X to 16X.

The only battle management function performed by the human operator is the launch of
airborne early warning aircraft (AWACS). The operator uses the mouse to select the de-
sired coverage area and issues a request to the battle management system. The ADSP
then sends a launch command to the Scenario Simulator and guides the AWACS to the
desired patrol area. Once in the desired region, the air defense system automatically
guides the AWACS in an oval pattern. Since new AWACS planes are automatically add-
ed to the Simulator model, the operator is able to control the scope of radar coverage
available to the system.

4.3 Experimental Control Console
The main purpose of the Experimental Control Console is to allow the experimenter to

monitor the behavior of the application and to control the simulated environment. For
public demonstrations, it is connected to a large-screen display device so that a large au-
dience can follow the scenario. The Experimental Control Console is similar in appear-
ance to the Operator Console. Like the Operator Console, it provides an air situation dis-

Final Technical Report

C-26 An Example Real-Time Command, Control and Battle Management Application for Alpha

rernel Thread Count: 11 KO Skeleton Pool: e
Client Thread Count: 8 KT Skeleton Pool: 8

Object Count: 9 CO Skeleton Pool: 8

Free Memory Page: 445 CT Skeleton Pool: 8

FREE MEMORY PAGES

I Engagements on Alpha III ObJecIs and Threads

ALPHA Queue Lengths

LH 859 / A 86 (HI) Applicationlnit 8

LH 861 / A 88 (HI) TrkHandlerType 2

LH 855 / A 882 (YL) LocalSvd4grType 8

LH 857 / A 883 (VL) TrkldentlflerType 8

ThreatAssesslype 8

SH ControllerType 2
AlControl lorlype 2

AWACSControl lerlype n

BC DL IQ SamEngapementType 0

13) [3) E8I
A Pairs Threo Count
[43 [el

Figure 9: Node Information Display

play and resource information. However, the Experimental Control Console displays real-
ity as defined by the Scenario Simulator, not as perceived by the defense system.
Therefore, the tracks displayed are not subject to radar coverage limitations or time de-
lays due to track processing.

The air situation display of the Experimental Control Console is almost identical to the
Operator Console (see Figure 8). Unlike the Operator Console, the Experimental Con-
trol Console has an additional row of icons at the bottom of its button panel that monitor
the health of the other components in the support system (e.g., Scenario Simulator, Oper-
ator Console, Communication Interface). There is also a row of icons indicating which of
the Alpha nodes are currently running. When a node fails (is turned OFF during the dem-
onstration) it is indicated on the Experimental Control Console.

The Experimental Control Console also allows the user to monitor the activity and per-
formance of each node in the distributed system testbed. By selecting an Alpha node
icon with the mouse, the experimenter activates a node information display. Node infor-
mation displays (see Figure 9) provide resource information such as scheduler queue
lengths and amount of available memory. They also list the weapon pairings being con-
trolled by the node, the types of Alpha objects resident on the node, and the number of
threads active in each object.

The Experimental Control Console is also used to control the Scenario Simulator. Dur-
ing system start-up it is used to script flight paths for hostile aircraft and missiles. A
special display window allows the experimenter to enter flight paths graphically with the
mouse. The scenario designer can specify hostile missile launch points and hostile war-
head detonation points. Once the system is running, the console can be used to raise or
lower the number of threats using control sliders. The sliders, located at the top-right of
the button panel, display the current number of threats and allow the user to specify a de-
sired maximum.

Final Technical Report

An Example Real.Time Command, Control and Battle Management Application for Alpha C-27

4.4 Communication Interface
The Communication Interface controls the flow of information between the ADSP and

the different components of the support environment. Information such as radar reports
from the simulator, display list information for the Operator Console, interceptor guidance
information from the weapon controlle:, and system monitoring information from the test-
bed is transmitted over this interface. The interface has two components--the message
multiplexer and the Alpha/UNIX communications link. The message multiplexer distrib-
utes and routes messages between the Scenario Simulator, Operator Console, and Ex-
perimental Control Console. The communications link provides the actual data transfer
path between the Alpha nodes and UNIX.

The message multiplexer provides a generalized data distribution service. The different
components of the support environment communicate using tagged messages. EacL mes-
sage consists of a tag indicating its type (e.g., radar report, guidance command) followed
by the body of the message. The contents and length of a message are defined by a "C"
language data structure for each message type. The multiplexer is connected to each of
the components in the support environment via UNIX sockets. Messages arriving at the
multiplexer are routed to one or more destinations based on a routing table that is loaded
during system initialization. The message multiplexer also performs optional processing
on each message when format conversions are needed between programs. The flexible
routing scheme was especially valuable during the development and debugging stages
since it allowed test stubs to be installed in place of components that were still under de-
velopment.

The Alpha/UNIX communications link provides a reliable bidirectional connection be-
tween an Alpha object and a UNIX socket. On the Alpha side, a kernel object encapsu-
lates the Alpha device drivers and provides operations to send and receive messages.
On the UNIX side, a process handles low-level details and shuttles data to and from a
socket that is connected to the message multiplexer.

The communications link operates either over an RS422 serial line or over the testbed
Ethernet. Because Alpha supports an object interface, it is easy to change between the
two links. The SerialIO and NetworklO objects (that encapsulate the links) provide the
same external interface, so it is only necessary to change the object reference that is dis-
tributed to other objects in the system. In the final version of the air defense system, the
change between the RS422 and Ethernet links can be made by changing one line in the
application code.

Final Technical Report

C-28 An Example Real-Time Command, Control and Battle Management Application for Alpha

5 Air Defense System Design
The air defense system was the first significant application designed for and implement-

ed using the Alpha programming model. Although there was no established methodology
for developing Alpha-based applications, the design team found conventional software
engineering principles to be well-suited for use with the object/thread paradigm. Many of
the fundamental concepts of software engineering (e.g., abstraction, information hiding,
and modularity [Fairley 85]) are directly supported by the object model. In fact, GD
found that Alpha's programming model simplifies the software design process by allow-
ing designers to move directly from a functional decomposition of the problem to an ob-
ject-based implementation. Since no conversion step was required to translate the natu-
ral system structure into "foreign" notions such as client/server processes or rate
groups, the requirements specification led directly to an implementation that was easy to
understand and simple to modify as requirements changed.

Starting from the system requirements outlined in Chapter 3, team members from GD
and CMU used a top-down approach to develop a design for the air defense system.
This design was subsequently enhanced and implemented by the group working at GD.

5.1 Design Approach
The application effort provided the participants with significant experience in the design

and development of distributed, real-time systems. By applying some fundamental soft-
ware engineering principles to the design of the ADSP, the designers developed an infor-
mal approach to creating applications for the Alpha programming model. Although the
technique is not sufficiently refined to classify it as a methodology, it does offer guidelines
and insights that can be used in developing future systems.

Using the system requirements as a basis, team members from GD and CMU used a
top-down approach to design the air defense system. The design process can be broken
down into the following components:

" Identify major system functions and activities
" Specify objects that provide the necessary functions

" Define threads that carry out the required activities
" Assign time constraints to threads

* Distribute the application across nodes

The first step in designing the air defense application was examining the requirements
to identify the major functions and activities. The designers found it useful to represent
the major components as (potentially ill-defined) objects and threads. Attempting to
specify functionality and operations for these "objects" often revealed natural boundaries
where components should be further specified or divided.

Once the major system functions had been defined, standard software engineering prin-
ciples were used to modularize the system into well-defined objects and operations. The
specification of the objects was a major part of the design effort. It was also the part
most amenable to conventional design methods. Designers used techniques such as da-
ta abstraction and functional decomposition to identify object boundaries and specify ap-
propriate operations. Well-defined metrics such as coupling and cohesion were used to

Final Technical Report

An Example Real-Time Command, Control and Battle Management Application for Alpha C-29

aid with the division and to identify parts of the system where more design work was
needed.

While the system functions were being decomposed into object specifications, work
continued on defining the application threads. Threads correspond to activities performed
by the system. Describing activities as threads provides a way of specifying how com-
pound functions are accomplished using many objects. Threads travel transparently be-
tween objects and nodes and may execute concurrently. The designers considered sever-
al alternatives when deciding which activities should have separate threads. The general
guideline adopted was that threads should be defined for activities that were logically in-
dependent and/or that had independent timeliness requirements. Chapter 7 describes the
application threads that were chosen.

Once the threads had been defined, rules were developed for determining their time con-
straints. In some instances, the timeliness requirements were static and easy to define.
In others, the time constraints were both dynamic and data-dependent. In the more com-
plex cases, the general shape of the time-value function was chosen based on the timeli-
ness characteristics of the task. Specific rules were then developed for calculating the pa-
rameters that define specific time-value functions (such as critical time and maximum val-
ue) from run-time information. Section 8.2 describes the time-value functions that were
eventually derived.

To a large extent, the object type specifications were developed without considering
how the system would be distributed across multiple nodes. Since Alpha provides trans-
parent distribution, the objects could be defined as if the application were going to exe-
cute on a centralized system. Distribution issues became important when considering
the survivability, availability, and concurrency requirements of the application. Survivabil-
ity requirements determined which objects would be replicated, while availability consid-
erations influenced the number and placement of object instances. The desire to improve
performance through application concurrency influenced how threads were distributed
among the nodes. Section 8.1 explains how these requirements were used to develop a
plan for distributing the objects and threads that comprise the air defense system.

5.2 Functional Decomposition
The application requirements outlined in Chapter 3 divide the ADSP into three major

components--tracking, mission planning, and weapon systems control. The first step in
designing the air defense system was analyzing these areas to identify the major func-
tions and activities. The purpose of identifying these components was not to develop an
exhaustive or precise list. Rather, the goal was to provide a basis from which further de-
sign work could proceed. The following paragraphs briefly outline the results of the analy-
sis.

Tracking revolves around the maintenance of a database containing positions, veloci-
ties, and other information about airborne objects. The primary tracking activity involves:

* collecting radar reports from the Communication Interface,

" correlating the radar reports with the tracking database,
* updating the tracking database to reflect the new information, and
" transmitting display information to the Operator Console.

Final Technical Report

C.30 An Example Real-Time Command, Control and Battle Management Application for Alpha

The tracking component is also responsible for identifying new tracks that enter the cov-
erage zone and for purging old ones that have either left the zone or been destroyed. Ad-
ditional tracking functions allow other parts of the system to retrieve and update informa-
tion about particular tracks.

The mission planning component determines and implements the appropriate response
to new tracks. The major functions include:

* determining the identity of new tracks,
• assessing the threat potential of hostile tracks,

" assigning appropriate weapons to intercept hostile craft, and
" initiating weapons launch and guidance sequences.

Every new track that enters the system must be identified. The remaining mission plan-
ning tasks are performed only for hostile tracks. Identification and threat assessment re-
ly on information from the tracking dnabase. To support the weapon assignment func-
tion, the mission planning system maintains a separate database containing information
on available weapon systems and active target/weapon pairings.

Weapon systems control involves:
* launching weapons and

* guiding weapons to their designated targets.

Specific versions of the control functions are required for each type of weapon. The long-
range weapons (i.e., airborne interceptors and guided missiles) require frequent course
corrections to ensure that they successfully intercept their targets. AWACS aircraft also
require course updates to maintain their oval flight pattern. The short-range SAMs only
require initial guidance. However, a separate weapon control activity is required for de-
tecting when targets approach within range of the SAM batteries.

The tracking, mission planning, and weapon systems control functions exist primarily to
satisfy the application processing requirements. Additional functions are needed to fulfill
the system survivability requirements. Specific functions dedicated to distribution and
survivability are responsible for tasks such as:

* distributing the processing load among multiple nodes, and
* helping the system recover from node failures.

Finally, because the ADSP is an experimental prototype, other functions are required to
integrate the system with its operating environment. These support functions include:

* handling communications with the experimental environment, and
* supplying system monitoring information to the Experimental Control Console.

Although this list of activities and functions identified by the requirements analysis was
not exhaustive, it provided the basis for defining the objects and threads that would com-
pose the air defense system prototype. The following two chapters describe the actual
objects and threads that were chosen.

Final Technical Report

An Exunple Real.Time Command, Control and Battle Management Application for Alpha C-31

6 Air Defense System Objects
The functional decomposition given in Section 5.2 provided the basis for choosing the

object types. After the major system functions had been identified, related functions
were grouped into objects using standard software engineering techniques. Figure 10

Tracking Objects

Plot Correlator
Track Database

'Mission Planning Objects

Track Handler
Track Identifier
Threat Assessment
Weapons Manager

Weapon Systems Control Objects

Interceptor C ntroller

Guided Missile Controlle
AWACS Controller
SAM Controller

SAM Engagement

System Support Objects

Communication Interface
Serial 1/0
Network 1/0
Node Status

Distributed Services Manager
Local Services Manager

Recovery Manager

Figure 10: Air Defense System Object Types

Final Technical Report

C-32 An Example Real-Time Command, Control and Battle Management Application for Alpha

lists the object types that were chosen. The remainder of this chapter describes each of
the objects in greater detail.

In the remainder of the text, object and operation names are set in italic type (e.g., Plot-
Correlator). At times, spaces have been inserted in object or operation names to improve
legibility. Operations within a specific object are referenced using a "dot" notation (e.g.,
Object.Operation, PlotCorrelator Initialize).

6.1 Tracking Objects

6.1.1 Plot Correlator

PlotCorrelator

InItIalize
Buffer Report

Mark Frame
Correlate Frame

Put Stamp
Get Stamp

The PlotCorrelator object correlates incoming radar reports with existing tracks in the
tracking database (TrackDB). Incoming radar reports are buffered in the PlotCorrelator
until an end-of-frame marker is received. The entire frame of data is then correlated with
the database contents. Reports that do not correspond to existing tracks are entered into
the database as uncorrelated reports. When three consecutive reports are received for a
new track, its type is changed to "unknown" and a new thread is created to handle its
identification and processing.

The operations defined on the PlotCorrelator are:
* Initialize - initializes internal data structures and creates a thread in the Corre-

lateFrame operation.
* Buffer Report - buffers a radar report in the local queue.

" Mark Frame - marks the occurrence of the end of a radar frame.

" Correlate Frame - correlates an entire frame of radar reports. The operation
blocks until a full frame has been received. It then correlates the reports (see
TrackDB.FindBestFit), creating new tracks for plots that do not match, and cre-
ating new threads to handle unknown tracks as they enter the system. When
processing for the frame has finished, the operation loops back and waits until
the next frame of data has been received.

* Put Stamp - stores a timestamp in the timestamp buffer.
" Get Stamp - retrieves the next timestamp from the timestamp buffer.

Final Technical Report

An Example Real-Time Command, Control and Battle Management Application for Alpha C-33

6.1.2 Track Database

TrackDB

Initialize
Get Track Into

Update Track Position
Update Track Type

Create Track
Remove Track

Hostile Page
Friendly Page

Find Best Fit
Track Hostiles

Age

The track database (TrackDB) object encapsulates the tracking database and all of the
routines that manipulate the database. It maintains position, velocity, and identity infor-
mation for all known tracks. Tracks can be created, removed, and updated (with new po-
sition or type information). The database also defines special operations used to corre-
late radar reports with existing database entries and to scan the coastline for hostile air-
craft.

The operations defined on the TrackDB are:
" Initialize - initializes the database and starts a "housekeeping" thread in the

Age operation.

" Get Track Info - retrieves information about a specific track (based on its
track-id).

" Update Track Position - sets a track's position and velocity to the given val-
ues. This operation is used by the plot correlation function to update the data-
base when new radar data is received.

* Update Track Type - sets the "'track type" entry for the specified track. This
operation is used by the new track processing functions to indicate whether a
track is a hostile bomber, friendly interceptor, friendly missile, etc.

*Create Track - creates a new track entry in the database.
*Remove Track - deletes a track entry from the database.
*Hostile Page - returns a block (page) of several track entries. Multiple invoca-
tions can be made to retrieve all of the hostile entries in the database. This op-
eration is used to update the Operator Console display.

*Friendly Page - is equivalent to HostilePage except it returns entries for

Final Technical Report

C-34 An Example Real-Time Command, Control and Battle Management Application for Alpha

friendly tracks.

" Find Best Fit - returns the trackid of the track that correlates most closely
with a given position. A special indication is returned if there are no matching
tracks. Correlation is based on available IFF information and predicted aircraft
positions. This operation is used by the plot correlation thread to match radar
reports with existing tracks.

" Track Hostiles - is a specialized operation used by the SAMController object
to locate hostile tracks that will soon come within range of a SAM defense site.

" Age - scans the database for tracks that have not been updated recently.
Track entries that are too old (because the aircraft was destroyed or moved out
of range) are deleted. A thread is started in this object by Initialize.

6.2 Mission Planning Objects

6.2.1 Track Handler

TrackHandler

Initialize
Enter Track

Dispatch
Process Track

Process Threat
Recover

The TrackHandler object coordinates the response to new tracks that enter the sys-
tem. The ProcessTrack operation is invoked for every new track. It is primarily responsi-
ble for establishing the identity of unknown tracks. When hostile tracks are discovered,
ProcessThreat uses the other mission planning objects to assess threat potential, choose
weapons, allocate weapons, and initiate weapons launch. ProcessThreat encapsulates
the tactical decision functions that determine how the system responds to threats.

The operations defined on the TrackHandler are:
" Initialize - initializes internal data structures and creates a thread in the Dis-

patch operation.

• Enter Track - registers the existence of a new track in an internal queue. This
operation is invoked by PlorCorrelator.CorrelateFrame when a new track is dis-
covered.

* Dispatch - creates threads to handle the processing of new tracks. A Dispatch
thread loops in this operation, removing entries from the new track queue (see
Enter Track) and creating threads in the ProcessTrack operation.

" Process Track - handles the processing of a new track that has entered the

Final Technical Report

An Etawple Real-Tume Command, Control and Battle Management Application for Alpha C-35

system. The track is identified using the TracklD object and, if hostile, is hand-
ed off to the ProcessThreat operation. This operation registers each new track
with the WeaponsManager object so that the activity can be recovered if a node
fails.

* Process Threat - determines and implements the proper response to a new
threat. The ThreatAssess and WeaponsManager objects are used to determine
the threat potential and to choose and allocate an appropriate weapon. Once a
weapon has been chosen, a new thread is created to launch and guide the weap-
on to its target.

• Recover - restarts activities that were lost when a node failed. These activi-
ties include new track processing and weapons guidance. Section 8.1 describes
node failure recovery in greater detail.

6.2.2 Track Identifier

TracklD

Initialize

ID Track

The track identifier (TrackiD) object determines the identity of a track based on origin,
velocity, and 1FF information. The initial version of this object relies on very simple heu-
ristics to determine the identity-friendly aircraft are assumed to transmit reliable IFF in-
formation, while other aircraft are assumed to be hostile. Velocity and altitude are used
to discriminate between bombers, missiles, and interceptors.

The operations defined on TracklD are:
* Initialize - initializes internal state.
• ID Track - identifies a track based on altitude, velocity, and IFF information.

6.2.3 Threat Assessment

ThreatAssess

Assess Threat

The threat assessment (ThreatAssess) object calculates the threat potential of a track
based on its position, velocity, and type. Tracks become more threatening as their esti-
mated travel time to the coast decreases. This object is used by the TrackHandler and
weapon control objects to assign importance values to time constraints.

Final Technical Report

C-36 An Example Real-Time Command, Control and Battle Management Applicatwn for Alpha

The only operation define on ThreatAssess is:
- Assess Threat - assesses the threat potential of a hostile track.

6.2.4 Weapons Manager

WeaponsManager

Initialize

Get Intercept Options

Get Site Location

AlIoca-e Weapons

Deallocate Weapons

Enter Pairing

Delete Pairing

inquire Pairings

Get All Pairings

Check SAM Pairing

Pair SAM

Unpair SAM

Register SAM

Register AWACS

Got Failed Pairings

Get Failed SAM Info

Get AWACS Controllers

The WeaponsManager object maintains a database of interceptors and missiles that are
available at each airbase. The TrackHindler consults this object to identify the type and
location of weapons that can intercept a particular threat. Once the TrackHandler has
chosen a weapon, it invokes the WeaponsManager to allocate it. Weapons that have
been allocated are removed from the pool of available resources. Guided missiles are re-
moved permanently, while manned interceptors are returned to the pool after they have
completed their mission and returned to base.

The WeaponsManager also maintains a list of active target/weapon pairings. This pair-
ing information is transmitted to the Operator Console where it is (optionally) used to
display pairing lines and predicted intercept information. The pairing information is also
used after a node failure to restart weapon guidance threads that were executing on the
failed node.

The operations defined on the WeaponsManager are:
Initialize - initializes internal data structures, including the weapons database.

Final Technical Report

An Example Real-Time Command, Control and Battle Management Application for Alpha C-37

" Get Intercept Options - computes the predicted time required to intercept a giv-
en threat for each available weapon type. The options are returned in order of in-
creasing intercept times.

" Get Site Location - returns the coordinates of an airbase based on its site ID.
* Allocate Weapons - allocates a particular weapon (airborne interceptor or guid-

ed missile).
• Deallocate Weapons - deallocates a particular weapon (e.g., after an intercep-

tor has returned to base after a mission).

" Enter Pairing - registers a pairing that associates a hostile track with a partic-
ular weapon (either a guided missile or manned interceptor). The pairing infor-
mation specifies the node where the weapon guidance thread is running.

• Delete Pairing - removes a target/weapon pairing from the database.

• Inquire Pairings - checks to see if one or more weapons are already paired
with a particular hostile track.

" Get All Pairings - returns a list of all target/weapon pairings

" Check SAM Pairing - checks to see if a SAM site has been paired against a
particular hostile track.

" Pair SAM - registers the assignment of a particular SAM site to a hostile
track.

• Unpair SAM - removes a target/S A.M pairing.

• Register SAM - saves the name of the node where the SAMController is cur-
rently active. This information is used to create a new SAMController if the pre-
viously active one is lost because of a node failure.

• Register AWACS - registers an AWACS guidance activity (including node
placement). This information is used in the event of a node failure to restart
AWACS control threads that were active on the lost node.

* Get Failed Pairings - returns a list of pairings registered on a particular node
(which is presumed to have failed). The pairings are also removed from the pair-
ing database.

" Get Failed SAM Info - checks to see if the SAMController object was active on
a lost node.

* Get AWACS Controllers - returns a list of AWACS guidance threads that were
active on a failed node.

6.3 Weapon Systems Control Objects
The weapon systems control objects are responsible for launching individual weapons

and for providing necessary in-flight guidance. The primary weapon systems are manned
interceptors and guided missiles. The secondary systems are terminal defense SAMs
and airborne early warning aircraft (AWACS).

Interceptors and missiles require frequent couse corrections to intercept their targets
successfully. These guidance updates are required in part because threats may change
course and in part because the weapon controllers use pursuit guidance algorithms. Pur-

Final Technical Report

C-38 An Example Real-Time Command, Control and Battle Management Application for Alpha

suit guidance uses the current position of a target to compute a weapon's course. An al-
ternate guidance algorithm, lead guidance, predicts the future position of a target by ex-
trapolating its current flight pathi. Lead guidance would require fewer course corrections
and would likely result in quicker intercepts. However, pursuit guidance has a particular
advantage for the ADSP. One of the goals of the application effort was to demonstrate
the effects of proper time-driven scheduling. If lead guidance were used, weapons could
hit their target with only a single guidance command (assuming the target did not change
course or speed). Using pursuit guidance ensures that there will be a visible effect when
guidance updates are delayed. This allows observers to determine when load shedding
occurs and to see which threats have been bypassed.

6.3.1 Interceptor Controller

InterceptorController

InItlalize
Launch
Control

The InterceptorController object is responsible for launching manned interceptors and
guiding them to their targets. The Launch operation transmits a launch request to the
Scenario Simulator and registers the target/weapon pairing with the WeaponsManager.
Once an interceptor has been launched, control is passed to the Control operation which
calculates further course updates. The Control operation also determines when the next
course update should be made (based on the estimated intercept time) and establishes
the proper time constraints. When the threat has been intercepted, the Control operation
guides the interceptor back to base where it lands and is returned to the pool of available
weapons.

The operations defined on the InterceptorController are:
* Initialize - initializes internal data structures.
• Launch - launches and initiates control of a particular interceptor. Launching

consists of computing an initial trajectory, creating a track for the interceptor in
the TrackDB, and issuing the launch command to the Scenario Simulator. The
newly launched weapon is registered with the WeaponsManager and control is
passed to the Control operation.

• Control - steers a weapon to its target by issuing intermittent guidance up-
dates. The frequency of the guidance updates is determined by the distance be-
tween the interceptor and its target. Guidance updates are computed using a
pursuit guidance algorithm.

Final Technical Report

An Exanmpe Real-Time Command, Control and Battle Management Application for Alpha C-39

6.3. Missile Controller

MissileController

Initialize
Launch
Control

The MissileController object is responsible for launching missiles and for guiding them
until they intercept their targets. The MissileController is very similar to the Interceptor-
Controller. The major difference between the two object types is the handling of "kills."
It is possible for a missile to "hit" the wrong target (and be destroyed) by passing too
close to it. If the missile is destroyed and its original target still exists, the guidance ac-
tivity notifies the TrackHandler to allocate and launch a new weapon against the hostile
track. Similar situations can occur when a missile's target is killed by another weapon.
If the guidance thread is unable to locate the threat, a self-destruct command is issued to
the Scenario Simulator to remove the missile.

The operations defined on the MissileController are:
" Initialize - initializes internal data structures.

* Launch - launches and initiates control of a particular missile. Launching con-
sists of computing an initial trajectory, creating a track for the missile in the
TrackDB, and issuing the launch command to the Scenario Simulator. The newly
launched weapon is registered with the WeaponsManager and control is passed
to the Control operation.

" Control - steers a weapon to its target by issuing intermittent guidance up-
dates. The frequency of the guidance updates is determined by the distance be-
tween the missile and its target. Guidance updates are computed using a pur-
suit guidance algorithm.

Final Technical Report

C-40 An Example Real-Time Command, Control and Battle Management Application for Alpha

6.3.3 AWACS Controller

A WACSControlkr

Initialize
Launch
Control

The AWACSController object guides an airborne early warning and control aircraft in an
oval pattern over its coverage area. The coverage area for each AWACS is defined by
the human operator. This placement information is passed to the Launch operation which
sends a launch command to the Scenario Simulator and calculates the initial guidance in-
formation. Each AWACS launch is registered with the WeaponsManager so that the
guidance activity can be restarted if it is lost because of a node failure. Control of the air-
craft is then passed to the Control operation which calculates the course corrections nec-
essary to maintain the oval. AWACS planes do not require course updates while flying
the straight legs of their flight pattern. However, since guidance commands are issued in
terms of absolute headings, they require frequent updates while navigating the circular
portions of their course.

The operations defined on the AWACSController are:
" Initialize - initializes internal data structures.
* Launch - launches and initiates control of an early warning aircraft. Launching

consists of computing an initial trajectory, creating a track for the AWACS in the
TrackDB, and issuing the launch command to the Scenario Simulator. The newly
launched AWACS is registered with the WeaponsManager and control is
passed to the Control operation.

" Control - steers an AWACS in an oval pattern by issuing intermittent guidance
updates. No course updates are required while the aircraft is flying the straight
legs of the pattern. Frequent updates are required to navigate the turns at the
end of the pattern.

Final Technical Report

An Example Real-Time Command, Control and Battle Management Application for Alpha C-41

6.3.4 SAM Controller

SAMController

InItiallze
Control SAMe9
Engage SAM

The terminal defense SAM batteries are managed by two objects-the SAMController
object and the SAMEngagement object. The SAMController is responsible for detecting
hostile tracks that are about to enter the range of the SAM batteries. When hostile
tracks are detected within range, the SAMController engages the appropriate SAM by
starting a thread in the SMEngagemenl.Launch operation.

The operations defined on SAMController are:
* Initialize - initializes internal data structures and creates a thread in the Con-

trolSA~s operation.
o Control SAs - monitors the locations of hostile tracks to identify threats that

will soon enter the range of a SAM battery.
s Engage Sa - initiates the SAMEngagementlaunch operation.

6.3.5 SAM Engagement

SAMEngagem-

Initialize
Launch

SAM Flyout

The SAMEngagement object simulates the aim-aim-fire sequence of a SAM battery us-
ing a sequence of delays and deadlines. The Launch operation assigns a particular SAM
to a hostile craft and waits for the target to come within range. When the target is within
reach, the SAMFlyou operation is invoked to simulate the aiming and firing sequence. If
the Launch and SAMFIyout operations successfully meet their time constraints, the SAM
is defined to be successful and a kill signal is sent to the Scenario Simulator. If any of the
time constraints are not satisfied, the launch operation is retried. This sequence contin-
ues until the target is either killed or travels out of range of the SAM battery.

Final Technical Report

C-42 An Example Real-Time Command, Control and Battle Management Application for Alpha

The operations defined on SAMEngagement are:
* Initialize - initializes internal data structures.
" Launch - assigns a particular SAM to a threat and monitors the target distance

to the kill ring. When the target is in range, the SAMFlyout operation is invoked
to engage the weapon.

" SAM Flyout - simulates the aim-aim-fire sequence of a SAM launch. Each
stage of the sequence is simulated by a time-constrained delay.

6.4 System Support Objects

6.4.1 Communication Interface

CommInterface

Initialize
Input Handler
Send Message

The Comnlnterface object manages communication between the ADSP (running under
Alpha) and the simulated environment (running under UNIX). The actual message trans-
mission is handled by either the NetworklO or SeriallO objects. A thread in the In-
putHandler operation accepts messages as they arrive from UNIX and invokes opera-
tions on the appropriate destination objects to deliver the incoming data. When an Alpha
thread needs to send a message to UNIX, it invokes the SendMessage operation with the
message to be transmitted.

The operations defined on Commlnterface are:
* Initialize - selects and initializes the communications link (either NetworklO

or SerialUO), creates a thread in the InputHandler operation to dispatch incoming
messages, and initializes internal data structures.

" Input Handler - receives messages from the communication link and invokes
operations on the appropriate objects based on the message type.

" Send Message - transmits an outbound message (from Alpha to UNIX) over
the active communication link.

Final Technical Report

An Example Real-Time Command, Control and Battle Management Application for Alpha C-43

6.4.2 Serial 11O

SeriallO

Initialize
Send Message

Receive Message

The SeriallO object provides a reliable communications link between an Alpha node and
a UNIX host over an RS422 serial line. SeriallO uses a custom protocol to ensure the ac-
curate reception of data packets. The protocol attaches a checksum and message number
to each message sent across the link. When a message is received, the checksum is re-
computed and compared with the transmitted value. If the checksums disagree, a nega-
tive acknowledgment (NACK) for that message is returned. If the checksums agree, no
response is generated (implicit acknowledgment). When the sender receives a NACK, it
re-transmits the corrupted message and all messages sent after the corrupted one.

The operations defined on SeriallO are:
* Initialize - initializes the serial line driver and protocol buffers and establishes

communication with the UNIX side of the communication link.

* Send Message - transmits an outbound message (from Alpha to UNIX) over
the serial line using the reliable serial protocol.

* Receive Message - reads the next message from the serial line and returns it
in the caller's message buffer. The invoking thread is blocked until a message is
available.

6.4.3 Network 1/O

NetworklO

Initialize
Send Message

Receive Message

The NetworkiCO object provides a reliable communications link between an Alpha node
and a UNIX host using an Ethemet-based communication protocol. The NetworkO ob-
ject acts as an interface to the Communications Processor (CP) on the Alpha node. The
CP is responsible for transmitting and receiving messages using the Alpha external com-

Final Technical Report

C.44 An Example Real.Time Command, Control and Battle Management Application for Alpha

munications (EXT) protocol. On the UNIX side of the connection, a special daemon han-
dles the reception and transmission of EXT messages.

The operations defined on NetworklO are:
" Initialize - initializes the message queue and establishes communication with

the UNIX side of the communication link.

" Send Message - transmits an outbound message using the EXT protocol.

* Receive Message - reads the next message from the Communication Proces-
sor and returns it in the caller's message buffer. The invoking thread is blocked
until a message is available.

6.4.4 Node Status

NodeStatus

Initiallze
Get Node Status

Lifeline

The NodeStatus object provides load and performance statistics for the node on which it
resides. The GetNodeStatus operation returns information about such things as memory
utilization, number of object instances, number of active threads, and scheduling queue
lengths. The Lifeline operation is used by the RecoveryManager object to detect when a
node has failed.

The operations defined on NodeStatus are:
* Initialize - initializes the statistics gathering buffers.

" Get Node Starw!t -- vtu rs irlbicadon abou'. such things as memory utilization,
number of object instances, number of active threads, and scheduling queue
lengths for the local node.

• Lifeline - blocks indefinitely on a semaphore. (A thread that invokes this op-
eration should never return to the invoking object. If the thread does return, it
means the thread has been broken due to a node failure.)

Final Technical Report

An Example Real-Time Command, Control and Battle Management Application for Alpha C-45

6.4.5 Distributed Services Manager

DSM

Initialize
Register Node Services

Request
Gather Status Info

Monitor Node Health
Handle Node Failure

The distributed services manager (DSM) object manages the distribution of objects and
threads among different nodes. When the application needs to create a new object or
thread, it Requests the new service from the DSM. The DSM then places the new object
or thread on the most lightly-loaded node. The actual creation of objects and threads is
handled by a local services manager (LSM) on the target node. (This scheme of using the
LSM as an agent was a convenient shortcut to ensure that threads would be rooted on
the desired node. A more general solution is expected to be included as a mechanism in
a later Alpha release.)

Load information is maintained by a thread that periodically requests status updates
from the application nodes. The DSM is also responsible for initiating recovery opera-
tions in the event of a node failure. The MonitorNodeHealth operation sends "feeler"
threads out to the different application nodes and initiates the HandleNodeFailure opera-
tion when any of the application nodes fail.

The operations defined on DSM are:
" Initialize - initializes local data structures and starts the status gathering and

monitoring functions.

" Register Node Services - registers the LSM and NodeStatus objects for a
node. The newly registered node is assigned a logical ID that is returned as a
parameter.

" Request - invokes LSM.Request on the most lightly-loaded node in the system.
* Gather Status Info - periodically updates the status and loading information for

each of the application nodes.
* Monitor Node Health - sends a "feeler" thread to the NodeStatus.Lifeline op-

eration on a particular node.
• Handle Node Failure - marks a node as down and initiates a recovery opera-

tion on the most lightly-loaded node.

Final Technical Report

C-46 An Example Real-Time Command, Control and Battle Management Application for Alpha

6.4.6 Local Services Manager

LSM

Initialize
Got Node ID

Request

The local services manager (LSM) object acts as an agent of the DSM--creaing local
objects and threads on its behalf. The LSM is also responsible for registering the local
node with the DSM when first powered up. When the node registers, it is given a logical
node ID that is used by the application to track the location of objects and thread roots in
case the node fails.

The operations defined on LSM are:
" Initialize - registers the local node with the DSM and initializes the logical ID

of the local node.

" Get Node ID - returns the logical ID of the local node.
" Request - creates a local object or thread on behalf of the DSM.

6.4.7 Recovery Manager

RecoveryManager

Initialize
Restart Failed Pairings

The RecoveryManager object is invoked by the DSM when a node failure has been de-
tected. The RecoveryManager is responsible for starting new instances of weapon
(AWACS, Interceptor, Guided Missile, and SAM) control threads that were active on
the failed node.

The operations defined on RecoveryManager are:
• Initialize - initializes internal state.

" Restart Failed Pairings - restarts controller threads that were active on a node
that has failed.

Final Technical Report

An Example Real.Time Command, Control and Battle Management Application for Alpha C-47

7 Air Defense System Threads
The air defense system object types define the functions that can be performed by the

application. The system threads define the sequence of activities that are actually exe-
cuted.

The ADSP threads were defined by examining the functional decomposition given in
Section 5.2. Threads were initially chosen by locating logically-related sequences of ac-
tivities. Once the sequences had been refined, decisions were made about when a single
thread should perform several jobs in succession and when separate thread instances
should be created to execute concurrently. The resulting design defines several different
types of threads. In some cases there is a single instance of a particular thread type in
the entire system. For other types, separate threads are created to handle each track or
each weapon that is active.

Tracking Thread

Plot Correlation t1 #hread)
Track Database Maintenance (I t head)

Mission Planning Threads

New Track Dispatching (I thread)

Track Processing (i thread:Iew track)

.Weapon Systems Contfrol Threads

Interceptor Launch & Control f 1 thread/aunch)

Missile Launch & Control (I thread/aunch)

AWACS Launch& Control f1 thread.aunch)

SAM Launch & :Control (1 thread/launch)

SAM Monitoring (1 thread)

System Support Threads

Input Processing (I thread)
Node Status Monitoring (thread)

Node Lifeline (1 thread/node)

Node Recovery Processing (1 thread/fai/ure)

Figure 11: Air Defense System Threads

Final Technical Report

C-48 An Example Real-Time Command, Control and Battle Management Application for Alpha

Figure 11 lists the different types of threads in the ADSP and shows how many in-
stances of each are created. The remainder of this chapter oescribes each of the thread
types in greater detail.

7.1 Tracking Threads

7.1.1 Plot Correlation

The plot correlation thread is responsible for updating the tracking database based on
incoming radar reports. A single instance of the thread is rooted in the PlotCorrela-
tor.CorrelateFrame operation. When a new frame of data has been received, the thread
retrieves the next timestamp from the input buffer (see PlotCorrelator.GetStamp) and be-
gins processing the radar reports. For each report, the thread correlates the location of
the report with the contents of the tracking database (see TrackDB.FindBestFit) and up-
dates the database as necessary. When new tracks are discovered, the thread registers
their existence using the TrackHandler.EnterTrack operation so that a new track process-
ing thread can be created. When an entire frame has been correlated, a new display list
is transmitted to the Operator Console using the Commlnterface.SendMessage opera-
tion. Finally, the plot correlation thread loops back and waits until the next frame of data
is available.

7.1.2 Track Database Maintenance

The track database maintenance thread removes ("ages") old tracks that are no longer
active. A single maintenance thread resides in the TrackDBAge operation. Every few
seconds (once per radar frame), the thread scans the database for threads that have not
been updated recently. Track entries that are too old (because the track moved out of
range or was destroyed) are deleted.

7.2 Mission Planning Threads

7.2.1 New Track Dispatching

The new track dispatching thread creates a track processing thread for every new track
that enters the system. A single thread rooted in TrackHandler.Dispatch waits for new
tracks to be identified by the plot correlation thread, and creates a new thread in the Pro-
cessTrack operation. Creating a thread for each track allows mission planning operations
such as track identification and weapon assignment to be carried out concurrently for sev-
eral tracks, and allows the time constraints for each of the threads to be set independent-
ly according to the threat potential of the associated track.

7.2.2 Track Processing

Track processing threads perform mission planning activities associated with new
tracks. First, the TracklD object is invoked to determine whether the new track is friend-
ly or hostile. If the track appears to be hostile, the track processing thread passes into
the TrackHandler.ProcessThreat operation where functions such as threat assessment
and weapon assignment are performed. The final act of the track processing thread is to
launch any missiles or interceptors that are assigned to intercept the track. Once the
weapons have been launched, the thread dies.

Final Technical Report

An Example Real-Time Command, Control and Battle Management Application for Alpha C-49

7.3 Weapon Systems Control Threads

7.3.1 Interceptor Launch and Control

The interceptor launch and control (L&C) thread launches an individual interceptor and
provides any necessary in-flight guidance to ensure an accurate intercept with the tar-
get. A separate L&C thread is created for every interceptor launched. Each thread is
started in the InterceptorController.Launch operation where it issues the launch request
and registers the pairing with the WeaponsManager. The thread then invokes the Control
operation to guide the interceptor to its target. The L&C thread is responsible for detect-
ing when the target has been successfully intercepttd and for guiding the interceptor back
to its base after the completion of the mission. When the interceptor is safely home the
thread dies.

Since a separate L&C thread is created for every interceptor, the system can indepen-
dently set the time constraints of each weapon control activity based on the potential
threat of its target. The exact nature of these time constraints is described in Sections
3.3.2 and 8.2.1.

7.3.2 Missile Launch and Control

The missile L&C threads are identical to the interceptor L&C threads except that mis-
siles that survive their missioi (because another weapon intercepted their target) are is-
sued self-destruct commands rather than being guided back to their base.

7.3.3 AWACS Launch and Control

An AWACS L&C thread is responsible for launching a single AWACS aircraft and

guiding it along an oval-shaped flight path. A separate thread controls each of the early
warning aircraft. Each L&C thread adjusts its time constraints dynamically depending on
whether the controlled aircraft is flying along a straight leg of the flight path (where
course adjustments are not required) or is flying around an end curve (where adjustments
must be made frequently).

7.3.4 SAM Launch and Control

SAM L&C threads manage the targeting and firing of individual SAM batteries. When
the SAM monitoring thread detects a hostile target about to enter the range of a SAM
battery, it creates a SAM L&C thread in the SAMEngagementJLaunch operation. The

L&C thread waits for the target to come within range, then invokes the SAMFlyout oper-
ation. The thread then enters a series of time constraints designed to simulate an aim-
aim-fire operation (see Sections 3.3.3 and 8.2.1). If the time constraints are satisfied,
the launch is defined to be successful and a kill message is issued to the Scenario Simula-
tor. (This is the only instance where the ADSP system running under Alpha issues a kill
command. In all other cases, kills are detected by the Scenario Simulator and must be
discovered by the ADSP. The short time scale of SAM engagements made this small ab-
erration necessary.)

7.3.5 SAM Monitoring

The SAM monitoring thread is responsible fox detecting hostile tracks that are nearing
the range of the terminal defense SAMs. A single monitoring thread is created at system

Final Technical Report

C-50 An Example Real-Time Command, Control and Battle Management Application for Alpha

initialization time. When a target is discovered (using TrackDB.TrackHstiles), the
SAM monitoring thread assigns a SAM battery and initiates the engagement by creating
a SAM L&C thread in the SAMEngagement.Launch operation.

7.4 System Support Threads

7.4.1 Input Processing

The input processing thread collects messages from the Communication Interface and
distributes them to the appropriate objects based on the message type. The majority of
messages received are radar plot reports which the input thread stores using the PlotCor-
relator.BufferReport operation. If the PlotCor 'elator object does not exist (e.g., because
of a node failure), the input processing thread requests the creation of a new correlator
(see Section 8.1).

7.4.2 Node Status Monitoring

A single node status monitoring thread travels around the system gathering node sta-
tus information (e.g., number of active threads, memory utilization, etc.) for each node.
This information is used by the DSM "o direct load balancing and to display monitcring in-
formation on the Experimental Control Console. The status monitoring thread is rooted
in DSM.GatherStatuslnfo and traves between the NodeStatus.GetNodeStatus operations
on each node.

7.4.3 Node Lifeline

A lifeline thread is created for each node when it registers itself at system initialization
or after a node recovery. The thread is created in DSM.MonitorNodeHealth where it im-
mediately invokes NodeStatus.Lifeline on the destination node. If a monitored node fails,
Alpha reports a thread break exception to the MonitorNodeHealth operation and the life-
line thread invokes DSMJ-IandleNodeFailure to initiate recovery processing. A more de-
tailed description of the failure recovery mechanism is given in Section 8.1.

7.4.4 Node Recovery Processing

When a node fails, any weapons L&C threads that were active on that node must be
restarted on the remaining nodes. The DSM.-andleNodeFailure operation creates a
node recovery processing thread in the RecoveryMgr.RestartFailedPairings operation.
The recovery thread retrieves a list of the lost threads using the GetFailedPairings and
GetFailedSAMlnfo operations of the WeaponsManager. It then creates new L&C
threads for each of the pairings using the DSM.Request operation. When all of the
threads have been regenerated on other nodes, the recovery processing thread dies.

Final Technical Report

An Example Real-Time Command, Control and Battle Management Application for Alpha C-51

8 Technology Evaluation
The primary goals of the Alpha application effort were to apply the decentralized, real-

time technology incorporated in the Alpha operating system, and to evaluate that technol-
ogy in a realistic context. This chapter discusses and evaluates how the advanced sys-
tems technology provided by Alpha was used to meet the distribution, survivability, and
timeliness requirements of the air defense application.

8.1 Distribution and Survivability

Distributed computers are rapidly becoming a major component in the design of large
application systems. Alpha is designed to integrate these physically dispersed nodes in-
to a single decentralized computer system--providing transparent access to, and unified
management of, distributed resources. This integration allows applications to obtain the
many performance, availability and survivability benefits of distributed systems without
incurring many of the difficulties often associated with conventional distributed program-
ming.

The air defense system prototype is designed to operate, without modification, either
on a single centralized computer or on a network of distributed computing nodes. The ac-
tual system has been tested in configurations containing between one and four Alpha
nodes. When executing in a distributed environment, the ADSP automatically distributes
work among the available processors. If one or more of the nodes fail, the ADSP auto-
matically recovers and continues to operate using the remaining nodes. If new or re-
paired nodes become available, they are seamlessly integrated into the already running
system.

To achieve this level of availability and survivability, the design team at GD (working
closely with the Alpha group at CMU) developed a plan for distributing the ADSP objects
and threads among the available nodes. Figure 12 illustrates a sample distribution of ob-
jects and threads between two of the application nodes. The bar graph at the left of each
display monitors the total number of threads active on the node. The listing on the right

Node It Node lI

Oberts and Tnreads OojecTs and Threads

ApplicationIn1 e" Applicationnlit e

IrKHandlerType 2 TrKHandlerType I

Lo aISvcMgType 0 LocaTSvcMgrType e
lrkIdenitferType e Tkidentifierlype 0

ThreatAssessType e ThrealAssessType 0

[ConTrol1erT7ype 2 I4ControllerType 3

AjConTrollerType 2 AlControllerTyDe 2

AVACSC.onTroler'vpe 2 AVAZSConTrollerType I

SatEngagesentType 8 SasEngageoentType B
SaaControllerlype 1

Thread Couni Thread CounT

Figure 12: Typical Distribution of Objects and Thr"tds

Final Technical Report

C-52 An Example Real-Time Command, Control and Battle Management Application for Alpha

Stateless Computation Servers

Track Handier
Track Identifier
Threat Assessment
'Guided MissileiGontrafler
Interceptor Controller
AWACS Controfler
SAM Engagement
Node Status

Local Servic Manager
Recovery Manager

Recoverable StateftI Servers

Plot Correlator

SAM Controller

Essential Data Repositories

Track Database

Weapons Manager

Figure 13: Object Distribution Classifications

shows the object instances present on the node and the number of threads active in each
object. (The object names listed in Figure 12 differ slightly from those used in this re-
port. The expanded names used in the report correspond directly to the object types used
in the ADSP, but are more legible.) The remainder of this section describes in greater de-
tail how the objects and threads are distributed and how that distribution allows the AD-
SP to recover and continue operating after node failures.

8.1.1 Object Distribution

Since Alpha provides for the transparent distribution of objects among processing
nodes, applications can largely be designed as if they were going to execute on a single
processor. Distribution issues become impoxiant when considering the survivability and
availability requirements of the application. In particular, the survivability requirements
determine which objects need to be inclusively replicated, while availability consider-
ations influence the number and placement of object instances.

The survivability requirements of the air defense application were outlined in Section
3.4. In designing the ADSP, those requirements were used to classify the application ob-
jects into three categories-stateless computation servers, recoverable stateful servers,

Final Technical Report

An Example Real-Time Command, Control and Battle Management Application for Alpha C-53

and essential data repositories. The categories are primarily distinguished by the
amount and type of application data maintained in the objects. Figure 13 lists the object
types in each class. The remainder of this section outlines their characteristics.

The stateless computation server (SCS) objects do not maintain any important state in-
formation between incoming operation invocations (i.e., they contain executable code, but
no important local data). As a result, if one of the SCS objects disappears because of a
node failure, no vital information is lost. Independent instances of the SCS objects can be
maintained concurrently on several nodes since no application data must be kept consis-
tent between the copies. For the ADSP, the designers decided to create local instances
of every SCS object on each of the application nodes. Maintaining local copies on each
node reduces the number of remote invocations required and simplifies failure recovery by
eliminating the need to create replacement objects after a node failure.

Unlike the SCS objects, the recoverable stateful server (RSS) objects do maintain ap-
plication state information between invocations. The information they store, however, is
often transient and can either be recreated or replaced if it is lost because of a node fail-
ure. The best example of an RSS object is the PlotCorrelator. The PlotCorrelator buffers
radar reports until they are processed. If the PlotCorrelator is lost, the radar reports that
have been buffered will be lost also. However, radar reports are constantly being gener-
ated by the sensors. Under the stressful conditions of a node failure, the ADSP design-
ers decided that it is better to process current reports as they arrive than to use poten-
tially limited processor cycles to restore and process outdated information. At most one
instance of any RSS object exists at any particular time. If that instance disappears be-
cause of a node failure, a new instance is created on demand on one of the remaining
nodes.

The essential data repository (EDR) objects maintain information that is vital to the
continued operation of the ADSP. The tracking database and weapons resource data-
base are the primary examples. The data stored in EDR objects should remain available
and consistent as long as any of the application nodes are functioning. To achieve this
level of reliability, the EDR objects should be inclusively replicated on multiple applica-
tion nodes. Since multiple copies of replicated objects are maintained in a consistent
state, the loss of a single node would not result in the loss of the data. The number of
replicas maintained can be set depending on the level of reliability desired.

Since the Alpha replication facilities were not in place in time for the ADSP demonstra-
tion, single instances of the EDR objects were placed on a system interface node along
with the communications functions. The need for an interface node originated because of
the serial communication link between the ADSP and the experimental environment run-
ning under UNIX. We did not have the time or the desire to implement redundant commu-
nication links, and so decided to dedicate one node to act as the interface and to hold
(temporarily) the EDR objects. The remainder of the nodes are interchangeable
"application" nodes that handle the bulk of the application processing.

8.1.2 Thread Distribution
In addition to survivability, one advantage of distributed systems is the ability to exe-

cute several activities concurrently. In the ADSP, multiple instances of several thread
types can be active at any time. While one node is processing a new frame of radar data,

Final Technical Report

C-54 An Example Real-Time Command, Control and Battle Management Application for Alpha

Before Node Failure

I1 Pairings I1 Paings 9 Pairings 10 PairIngs

After Node Failure

13 Pairings 14 Pairings 13 Pairings

Figure 14: Reconfiguration After a Node Failure

other nodes may be computing guidance information for weapons that have already be
launched. In general, it is desirable to distribute the processing load evenly among the
nodes (to avoid local overloads). Load balancing methods for distributed system are the
topic of continuing research. For the ADSP, load balancing is managed by the DSM. The
DSM maintains status information on each of the nodes in the system. It uses this sta-
tus information (including number of active threads, memory utilization, etc.) to estimate
the load on each node. Each time a new mission planning or weapon systems control
thread is requixed, an invocation is made on the DSM to create the new activity. The
DSM then forwards the request to the LSM on a lightly-loaded node where the thread is
then created.

This load balancing scheme works relatively well for the ADSP. Eventually, however,
many of the services provided by the DSM will be supplanted by more general system
services offered by Alpha. Our experience with the DSM has given us a better under-
standing of the types of services that should be offered and the ways in which applica-
tions are likely to use them.

8.1.3 Node Failure Response

One of the fundamental survivability requirements specified by the application design
team was that the ADSP should continue to operate correctly after one or more node fail-
ures. This capability requires both that essential application data remain available and
that partially-completed activities active on the failed node be cleaned up and, if neces-

Final Technical Report

An Eumple Real-Time Command. Control and Battle Management Application for Alpha C-55

sary, restarted. The designers ensured that important data would remain available after
a failure by keeping vital application information in the essential data repository objects.
The remaining task of cleaning up and restarting failed activities is handled by Alpha and
by the RecoveryManager.

The distribution and exception-handling facilities provided by Alpha already handle a
significant amount of the processing required when a node fails. Alpha automatically de-
tects a node failure and initiates system cleanup operations. Any threads that were ac-
tive on the failed node are trimmed and an exception is returned to the invoking object.
Exception handling code then initiates application-level recovery operations.

Once the system-level cleanup has been completed, a node failure is signalled to the
DSM (via the node lifeline thread for the failed node). The DSM removes the failed node
from the resource pool and starts a new thread in the RecoveryManager object. The re-
covery operation queries the WeaponsManager for a list of guidance threads that were ac-
tive on the failed node. Replacement activities are then created and distributed across
the remaining nodes in the system. Any recoverable stateful server objects that were ac-
tive on the failed node are recreated on demand on one of the remaining nodes. Figure 14
illustrates how weapons guidance threads are redistributed in response to a node failure.
In this example, the nine target/weapon pairings being controlled by the third node are re-
assigned to the other available nodes.

During public ADSP demonstrations, node failures are simulated by turning off the pow-
er to one of the application nodes. By monitoring the node displays on the Experimental
Control Console, it is possible to watch the defense system recover by restarting the lost
guidance activities on the remaining nodes. The "failed" node is then turned back on and
re-integrated into the running defense system.

8.2 Time-Driven Resource Management
The primary requirement of the air defense system is that it prevent hostile targets

from violating U.S. airspace. To meet this requirement, the tracking, mission planning,
weapon systems control, and system support activities must be carried out on time. If a
SAM launch sequence is completed ten seconds after its target has dropped a bomb on
New York Cit.,, it has failed just as much as if the launch had never been completed. The
situation is further complicated by the diverse characteristics and dynamic nature of the
time constraints presented by the ADSP. Applications such as air defense have complex
timeliness requirements that are not easily expressed in terms of fixed, periodic, or hard
deadlines. For example, the urgency and importance of issuing guidance updates when a
target is hundreds of miles away is significantly lower than when the target is about to
reach the coastline. Finally, the ADSP must continue operating to preserve the coastal
integrity even when insufficient processing resources are available (as may be the case
in the event of one or more node failures).

Alpha supports this type of complex and changing real-time application through its use
of a unified time-driv-.n resource management mechanism. In Alpha, timeliness require-
ments are specified dynamically by application threads using time-value functions. Time-
value functions allow a variety of time constraints to be specified both concisely and accu-
rately. This information is then used by the best-effort scheduler to allocate processor
cycles in a way that maximizes the benefit to the application. Under normal conditions

Final Technical Report

C-56 An Example Real-Time Command, Control and Battle Management Application for Alpha

V Plot Correlation V Track Database
a a - Maintenance

... . . Ii

U U

tTframe Time

VF Missile Control V Interceptor Control
a inte.rceptI IF

U IF
mid-cow..o P

VF
launch

Time t Time

Figure 15: ADSP Time-Value Function Examples

this means that "?t timeliness requirements of all activities will be satisfied. If the sys-
tem is overloaded (e.g., because of a node failure), those activities that are the most valu-
able to the application as a whole will be given preference. For a more complete discus-
sion of Alpha's time-driven resource management mechanisms and policies, refer to Sec-
tion 2.2.

8.2.1 Application Time-Value Functions

The timeliness requirements of the air defense application were discussed in Section
3.3. Once the application threads had been defined, the designers found that converting
these textual requirements into actual time-value functions was fairly straightforward. A
significant amount of system "tuning" was eliminated since the team did not have to
massage the requirements into a foreign set of real-time specifications such as rate
groups or priority levels.

To derive time-value specifications from the written requirements, each of the time-
constrained activities was analyzed to determine its critical time and its completion value
over time (to determine the shape of the function). The different activities were then
compared to determine the amplitude of the functivn by estimating their relative value to

Final Technical Report

An Example Real-Time Command, Control and Battle Management Application for Alpha C-57

the system during overload situations. These considerations combined to define the final
time-value function specifications.

The plot correlation and track database maintenance threads have critical times corre-
sponding to the radar frame arrival rate. In both cases, it is best if the processing is com-
pleted before the next frame of data arrives. However, it is acceptable for the processing
to slip as much as one additional time frame under extreme overload situations. The
time-value functions for these threads are shown in Figure 15(a) and Figure 15(b). As
illustrated, both functions share the same shape and critical time. The plot correlation ac-
tivity, however, has a much greater value to the system under overload conditions.

The timeliness requirements for the missile and interceptor launch and control threads
vary over the course of an engagement. After launch, the guidance control threads must
issue timely course updates to ensure a successful intercept. However, the required fre-
quency of these updates and the importance of completing the course corrections at the
desired time change both as the distance between the weapon and the target and from
the target to the coastline decrease. Figure 15(c) illustrates how the time-value func-
tions for weapon control threads vary over the course of an intercept. The characteristics
can be summarized as follows:

" loose time-constraints - The critical time indicates the time at which course
correction is preferred, not absolutely required.

* variable critical times - Course corrections are needed more often as the dis-
tance between the threat and the weapon decreases. The desired update time
is one fourth of the predicted time to intercept. Arrow 1 in Figure 15(d) filus-
trates how the critical time changes as the intercept nears.

* variable "hardness" - It becomes more important to use the most recent posi-
tion information as the distance between the threat and weapon decreases.
Therefore as the distance narrows, it may be preferable to abort a late update
and restart the guidance calculations with fresh information. Arrow 2 in Figure
15(d) shows how this requirement is reflected by a decrease in the completion
value of the constraint after the critical time.

" dynamic maximum - The value of successfully completing an intercept corre-
sponds to the threat potential of the target being intercepted. The perceived
threat depends on changing parameters such as distance from coastline. Arrow
3 in Figure 15(d) illustrates how the time-value function is scaled upward as
the threat increases.

Although very different from more conventional real-time specification methods, the
ADSP designers were pleased with the expressive ability and ease of deriving time-val-
ue functions. Other specification methods would likely not have allowed time constraints
for individual activities to be specified so easily. If only one constraint could be specified,
all instances of an activity would have to execute under the most stringent constraint of
any instance--potentially causing time constraints to be missed unnecessarily. The abili-
ty to specify importances, or values, for separate instances of a thread allow the system
to make much better resource decisions when the system is overloaded.

Final Technical Report

C-58 An Example Real-Time Command, Controi and Battle Management Application for Alpha

7

Both Interceptors
Correctly Targeted

Bomber
LM53 (greater threat)

S..L H54 ",. ,

/A880

00

Jammer
(lower threat)

Figure 16: Normal Behavior

8.2.2 System Overload Behavior

Many real-time systems react to temporary overload conditions by breaking completely
and permanently. To reduce the probability of such failures occurring, designers may re-
quire such massive redundancy that "overloads will never happen." Besides being
wasteful, such techniques may not work if a system suffers multiple simultaneous fail-
ures (as might be expected during an intentional attack).

The best-effort scheduler used by Alpha responds to overload conditions by concentrat-
ing its efforts on completing activities that will be the most valuable to the application (as
specified by the trre-value functions). For the ADSP, this means that the Operator Con-
sole display is accurately maintained and that targets within the range of the SAM de-
fenses receive primary attention. Other targets receive attention based on their per-
ceived threat.

The visible effect of this overload management policy is that guidance updates for weap-
ons paired with the greatest threats are issued on-time, so the most significant threats
are intercepted before they can inflict damage. Guidance updates for other weapons may
be delayed. The delay may result in longer flight paths and later intercept times, but will
not allow hostile targets to leak through unless the system is so overloaded that even
the most essential activities cannot be completed.

Final Technical Report

An Example Real-Time Command. Control and Battle Management Application for Alpha C-59

S /

Jammer Interceptor
I (guidance delayed)

Bomber
L 54 (greater threat)

LM53 A

Bomber Interceptor/ 1 (correctly targeted) A-

A901

I Jammer
(lower threat)

Figure 17: Overload Behavior

Figures 16 and 17 illustrate the overload handling policy. In this case, two friendly in-
terceptors (LH53 and LH54) have been paired with a hostile bomber (AOOO) and a hos-
tile jammer (AO01) respectively. These pairings are indicated by dashed pairing lines be-
tween the friendly interceptors and the threats. In the normal case (Figure 16), both in-
terceptors receive guidance updates when needed and are correctly directed toward their
targets. (Track headings and speeds are indicated by the direction and length of the line
emanating from the track marker.) In Figure 17, an artificial overload has been imposed
on the ADSP. In the overload case, the interceptor paired with the bomber (a great
threat) is given preference over the interceptor paired with the jammer (a lesser threat).
As a result, the bomber is correctly targeted by LH53, while guidance updates for LH54
are delayed (LH54 is not flying toward its target and is farther away from the threat).
The aggregate result of this behavior is that hostile targets tend to penetrate deeper
when the system is overloaded than under normal conditions. Even under overload condi-
tions, however, the ADSP continues to satisfy its mission.

Final Technical Report

C-60 An Example Real-Time Command, Control and Battle Management Application for Alpha

9 Conclusions
The results of the Alpha application effort have been extremely worthwhile and very en-

couraging. Using Alpha, a small group of programmers was able to design and implement
a realistic air defense system prototype in a period of a few months. The prototype has
successfully demonstrated many of Alpha's distribution, time-driven scheduling, and sur-
vivability mechanisms, and has validated our belief that Alpha is well-suited for the de-
sign and construction of large, distributed, real-time applications. This chapter relates
some of the many lessons we have learned from the effort, and describes some of the con-
tinuing work that is in progress.

9.1 Lessons Learned

9.1.1 Decentralized Computing

Alpha is designed to integrate a set of physically dispersed computer nodes into a sin-
gle decentralized system. Our experience with the ADSP indicates that we have made
great strides toward that goal. Objects can be dynamically created at any node, and can
be invoked without knowing the node on which they actually reside. Application threads
move freely across node boundaries--carrying attributes such as atomicity and time con-
straints with them. A major benefit of this decentralization is that it allows applications
to obtain the availability and survivability benefits of physical distribution without incur-
ring many of the difficulties often associated with conventional distributed programming.

9.1.2 Programming Model

The application designers at GD found the Alpha programming model easier to use than
conventional process-based models. The object/thread paradigm allowed the design
team to think in application terms when designing the structure of the software. Since
there was no conversion step to translate the natural system structure into foreign con-
structs such as client/server processes, the overall design time was shortened. The re-
quirements specification led quickly to an implementation that was both easy to under-
stand and simple to modify as requirements changed.

9.1.3 Time-Driven Resource Management

Our experience with the ADSP has confirmed that C2/BM applications have timeliness
requirements that are not easily expressed in terms of fixed, periodic, or hard deadlines.
The coastal air defense application presented a variety of timeliness requirements. Ac-
tivities such as radar plot correlation have roughly periodic arrival rates, but soft time
constraints. Weapons guidance activities have dynamically changing timeliness require-
ments whose duration, "hardness," and importance vary as the encounter progresses.
Finally, activities such as SAM launch control have strict hard deadlines, but occur aperi-
odically. None of these examples match the popular notion that real-time tasks are ei-
ther periodic with hard deadlines or aperiodic with loose timing requirements.

In comparison, the ADSP has demonstrated that the time-driven scheduling facilities
provided by Alpha are appropriate for use in large distributed systems. Time-value func-
tions allow a variety of system timeliness requirements to be specified both simply and
accurately. The best-effort scheduling algorithm used for the ADSP successfully allo-

Final Technical Report

An Example Real-Time Command, Control and Battle Management Application for Alpha C-61

cates processor cycles to ensure that, when possible, activities are completed on time.
When not enough resources are available (e.g., because of a node failure), the overload
handling capabilities of the best-effort algorithm keep the ADSP operating and allow it to
continue fulfilling its primary mission requirements.

9.1.4 System Survivability

Mission-oriented systems such as the ADSP need to continue functioning even if parts
of the computer system fail. Designing a system that could weather node failures was
made much easier by the survivability mechanisms provided by Alpha. Alpha automati-
cally detects node failures, returns the system to a consistent state, and reports the fail-
ure to the affected application threads via a uniform exception handling mechanism. As a
result, the application designers could concentrate on developing a recovery policy that
ensures that no vital information or activities are lost. Because the operating system
handles many of the details, the actual implementation and testing of the recovery opera-
tions for the ADSP was relatively simple. The resulting application successfully recovers
from multiple node failures and even allows repaired nodes to be re-integrated into the
running system.

Our experience designing the application-specific distributed services and recovery
managers has allowed us to identify additional system-level services that would aid the
development of survivable applications. Future releases of Alpha will incorporate this
experience in the form of system service objects that provide much of the functionality of
the DSM and RecoveryManager, but in a more general and consistent manner.

9.1.5 Program Management
One unique aspect of the application effort was its timing with respect to the develop-

ment of the operating system. Since Alpha was being developed in tandem with the ap-
plication, good communications between the operating system group at CMU and the ap-
plication team at GD were vital. The use of a dedicated liaison, who spent a significant
amount of time at both sites, worked extremely well under these circumstances. The
people at GD knew who to ask when questions arose (which, considering the dearth of
Alpha documentation at the time, they often did). Meanwhile, the group at CMU could
concentrate their efforts on developing Alpha. The liaison, being familiar with both the
ADSP code and the operating system intemals, could efficiently investigate bugs as they
appeared, and could work to isolate and fix problems with minimal disruption of the appli-
cation or operating system development.

To support the application effort, the Alpha group had to reorganize the project schedule
and priorities somewhat. Implementation of some features was deferred (notably sec-
ondary storage and atomic transactions) in order to expedite the development of other
features required by the ADSP. Features that were accelerated or enhanced beyond
their planned level of functionality include the time-driven scheduling policies, the applica-
tion programming environment, AlphaJNIX interoperability mechanisms, and asynchro-
nous exception handling. Any negative impact of the schedule changes, however, was far
outweighed by the benefits of and experience gained from the application effort.

Final Technical Report

C-62 An Example Real-Time Command, Control and Battle Management Application for Alpha

9.2 Future Directions
The ADSP was the first significant application developed for Alpha. One of the goals in

undertaking such an early application effort was to identify areas where further research
and development efforts would be most effective. As expected, the experience has high-
lighted several areas where research is continuing. The success of the effort has also
prompted us to implement other applications in an attempt to expand our understanding
of different application requirements and determine how well they are met by the mecha-
nisms and policies provided by Alpha.

9.2.1 Related Research

Our experience with the ADSP has highlighted several areas where additional research
is warranted. In particular, it seems vital that we continue our exploration of real-time
scheduling techniques, object replication, and real-time, atomic transactions.

The best-effort scheduling algorithm employed in the prototype has performed well.
However, Alpha researchers have identified methods of improving its ability to handle
certain types of activities. In particular, two Ph.D. theses are addressing the issues of
threads with dependency relationships and time-constrained threads that span multiple
nodes (see [Clark 881, [Archons 88]). We have also recognized the need to develop a
better methodology for deriving time-value functions and better tools for computing the
execution-time estimates required by many real-time scheduling algorithms.

9.2.2 System Enhancements

The ADSP continues to be a valuable tool for experimenting with Alpha. By more thor-
oughly monitoring the current system and by implementing extensions and enhance-
ments, we can learn significantly more from the air defense application. To date, only lim-
ited performance monitoring of the ADSP has been carried out. By further instrumenting
the system, it should be possible to learn a great deal about the resource request pat-
terns of a real application. This information would provide valuable insight into the nature
of C2/BM applications, and would allow the Alpha designers to concentrate performance
tuning efforts in areas that would make the greatest difference.

The ADSP should also provide an excellent environment for testing new Alpha function-
ality. The essential data repository objects would be ideal candidates for exercising such
facilities as object replication and atomic transactions. Similarly, much of the functionality
of the DSM object could gradually be migrated into more general system-level services
that support system initialization, load distribution, and failure reconfiguration. Already
having a large application that can benefit from these facilities will prove extremely valu-
able when testing their functionality.

Because the ADSP was designed as a prototype, it would be relatively simple to en-
hance the system by increasing the fidelity of many of its functions. Many of the mission
planning objects could be changed to use more sophisticated algorithms or could be con-
verted into decision-support systems for a human operator. The system could also be
enhanced to support additional functions such as multi-sensor fusion. These types of en-
hancements should especially interest application developers who could gain experience
designing command and control systems in the Alpha context.

Final Technical Report

An Example Real-Time Command, Control and Battle Management Application for Alpha C-63

9.2.3 Future Applications

Experience with the ADSP indicates that the best-effort scheduler works well in large
real-time systems. However, the complexity of the ADSP limits the direct visibility of
scheduling decisions, and makes it difficult to quantify the performance of the scheduler.
For these reasons, the Alpha designers are developing an application designed explicitly
to test the behavior and performance of the Alpha scheduling facility. The new applica-
tion will allow us to monitor the decisions made by the scheduler in a more controlled en-
vironment, and will allow us to compare the results obtained using alternate scheduling
algorithms. The initial application uses Alpha to move a set of simulated paddles that re-
flect balls travelling through the air. Different scheduling algorithms move the paddles in
different pattems-allowing a direct, graphical display of the processor allocation poli-
cies A separate technical report will detail these experiments when they have been
completed.

In addition to specialized application systems such as the schedulng application, we
anticipate that other real-time, C2/BM prototypes will be built using later generations of
Alpha. Planning for such application systems, involving several industrial partners, is al-
ready in progress at Concurrent Computer Corporation.

Final Technical Report

C-64 An Example Real-Time Command, Control and Battle Management Applicationfor Alpha

References
[Archons 88] Archons Project

Alpha Preview: A Briefing aid Technology Demonstration for DoD.
Presentation Notes, Archons Project Technical Report #88031, De-

partment of Computer Science, Carnegie Mellon University,
March, 1988.

[Clark 88] Clark, R. K.
Scheduling Dependent Real-Time Activities.
Ph.D. Theis Proposal, Department of Computer Science, Carnegie

Mellon University, October, 1988.

[Cox 86- Cox, B. J.
Object-Oriented Programming
Addison-Wesley, Reading, Massachusetts, 1986.

[Fairley 85] Fairley, R. E.
Software Engineering Concepts.
McGraw-Hill Series in Software Engineering and Technology,

McGraw-Hill, New York, 1985.

[Jensen 75] Jensen, E. D.
Time-Value Functions for BMD Radar Scheduling.
Technical Report, Honeywell System and Research Center, June,

1975.

[Locke 86] Locke, C. D.
Best-Effor. r)ecision Making for Real-Time Scheduling.
Ph.D. Thes,,, Department of Computer Science, Carnegie Mellon Uni-

versity, May, 1986.

[Northcurt 87] Northcutt, J. D.
Mechanisms for Reliable Distributed Real-Time Operating Systems:

The Alpha Kernel.
Academic Press, Boston, 1987.

[Northcutt 88a] Northcutt, J. D.
The Alpha Operating System: Requirements and Rationale.
Archons Project Technical Report #88011, Department of Computer

Science, Carnegie Mellon University, January, 1988.

[Nor, u n 88b] Northcutt, J. D. and Clark, R. K.
The Alpha Operating System: Programming Model.
Archons Project Technical Report #88021, Department of Computer

Science, Carnegie Mellon University, February, 1988.

[Northcutt 88c] Northcutt, J. D.
The Alpha Distributed Computer System Testbed.
Archons Project Technical Report #88033, Department of Computer

Science, Carnegie Mellon University, March, 1988.

Final Technical Report

C-64 An Example Real-Time Command, Control and Battle Management Applicationfo' Alpha

References
[Archons 88] Archons Project

Alpha Preview: A Briefing and Technology Demonstration for DoD.
Presentation Notes, Archons Project Technical Report #88031, De-

partment of Computer Science, Carnegie Mellon University,
March, 1988.

[Clark 88] Clark, R. K.
Scheduling Dependent Real-Time Activities.
Ph.D. Thesis Proposal, Department of Computer Science, Carnegie

Mellon University, October, 1988.

[Cox 86- Cox, B. J.
Object-Oriented Programming.
Addison-Wesley, Reading, Massachusetts, 1986.

[Fairley 85] Fairley, R. E.
Software Engineering Concepts.
McGraw-Hill Series in Software Engineering and Technology,

McGraw-Hill, New York, 1985.

[Jensen 75] Jens-., E. D.
Time- Calue Functios for BMD Radar Scheduling.
Technical Report, Honeywell System and Research Center, June,

1975.

[Locke 86] Locke, C. D.
Best-Effort Decision Making for Real-Time Scheduling.
Ph.D. Thesis, Department of Computer Science, Carnegie Mellon Uni-

versity, May, 1986.

[Northcutt 87] Northcurt, J. D.
Mechanisms for Reliable Distributed Real-Time Operating Systems:

The Alpha Kernel.
Academic Press, Boston, 1987.

[Northcutt 88a] Northcutt, J. D.
The Alpha Operating System: Requirements and Rationale.
Archons Project Technical Report #88011, Department of Computer

Science, Carnegie Mellon University, January, 1988.

[Northcutt 88b] Northcutt, J. D. and Clark, R. K.
The Alpha Operating System: Programming Model.
Archons Project Technical F:,port #88021, Department of Computer

Science, Carnegie Mellon University, February, 1988.

[Northcutt 88c] Northcurt, J. D.
The Alpha Distributed Computer System Testbed.
Archons Project Technical Report #88033, Department of Computer

Science, Carnegie Mellon University, March, 1988.

Final Technical Report

An Eample Real-Time Command, Control and Battle Management Application for Alpha C-65

[Northcutt 88d] Northcutt, J. D. and Clark, R. K.
The Alpha Operating System: Kernel Internals.
Archons Project Technical Report #88051, Department of Computer

Science, Carnegie Mellon University, May, 1988.

(Northcutt 88e] Northcutt, J. D.
The Alpha OperatingSystem: Programming Utilities.
Archons Project Technical Report #88041, Department of Computer

Science, Carnegie Mellon University, April, 1988.

[Shipman 88] Shipman, S. E.
The Alpha Operating System: Programming Language Support.
Archons Project Technical Report #88042, Department of Computer

Science, Carnegie Mellon University, April, 1988.

Final Technical Report

C-66 An Example Real-Time Command, Control and Battle Management Application for Alpha

THIS PAGE INTENTIONALLY LEFT BLANK

Final Technical Repori

An Example Real-Time Command, Control and Battle Management Application for Alpha C-67

THIS PAGE INTENTIONALLY LEFT BLANK

Final Technical Report

C-68 An Ezmple Real-Time Conand. Control and Baule Management Application for Aloha

THIS PAGE INTENTIONALLY LEFT BLANK

Final Technical Report

An Ezample Real-Time Command, Control and Battle Management Applicadon for Alpha C-69

THIS PAGE I1N=IONALLY LEFT BLANK

Final Technical Report

C-70 An Example Real-Time Command, Control and Banle Management Application for Alpha

THIS PAGE INTENTIONALLY LEFT BLANK

Final Technical Report

An Example Real-Time Command. Control and Battle Management Application for A.lp/a C-71

THIS PAGE INTENTIONALLY LEFT BLANK

Final Technical Report

C-72 An Example Real-Time Command. Control and Battle Management ApplicationforAlpha

THIS PAGE INTENTIONALLY LEFT BLANK

Final Technical Report

An Exampe Real-Time Command. Control and Battle ManagementApplicaionfor Alpha C-73

THIS PAGE INTENTIONALLY LEFT BLANK

Final Technical Report

C-74 An Example Real-Time Command, Control and Battle Management Application for Alpha

THIS PAGE INTENTIONALLY LEFT BLANK(

Final Technical Report

An Example Real-Time Command, Control and Battle Management Applicadonfor Alpha C-75

THIS PAGE INTENTIONALLY LEFT BLANK

Final Technical Report

C -76 An Example Real-Time Command, Control and Battle Management Appli cation for Alpha

THIS PAGE INTENTIONALLY LEFT BLANK

Final Technical Report

An Ewnple Real-Time Command, Control and Battle Management Application for Alpha C-77

THIS PAGE INTENTIONALILY LEFT BLANK

Final Technical Report

C-78 An Example Real-Time Command, Control and Battle Management Application for, Ipha

THIS PAGE NTENTIONALLY LEFT BLANK

Final Technical Report

An Example Real-Time Command. Control and Battle Management Application for Alpha C-79

THIS PAGE INTENTIONALLY LEFT BLAnNTaR

Final Technical Report

C-80 An Example Real-Time Command, Control and Battle Management Application for Alpha

THIS PAGE LD'rNTIONALLY T.EFT BLANK

Final Technical Report

An Lumpic Acal-Time CanvArjd. Control and Bate Management Application for Alpha C-81

THIIS pAGE TITETIONALLY LET BL=1

Finad Technical Report

C-82 An Example Real-Time Command, Control and Battle Management Application for Alpha

THIS PAGE INTENTIONALLY LEFT BLANK

Final Technical Report

DISTRI3UTION LIST

addresses number
of copies

RADC/COTD 10
ATTN: Thomas F. Lawrence
Griffiss AF9 NY 13441-5700

Carnegie-MeLLon University 5
Deot of Coiputer Science
Deot of Etectrical Engineering
Pittsburgh DA 15213-3390

RADC/DOVL 1
Technical Library
Griffiss AF3 NY 13441-5700

Adm inistrator 2

Defense Technical Info Center
DTIC-FDA

Caveron 3tition 9uiLaing 5
Atexanri3 VA 223G4-6145

Stratelic Defense Initiative Office 2
Office of the Secretary of Defense
43sh DC 23301-7100

RADC /COTD 1
3ijiding 3, Room 16
Griffiss AF-3 NY 13441-5700

AFCSA/ SAI1 1
ATTN: Miss Iriffin
i0363 Pentagon
Washinaton DC 20330-5425

HI USAF/SCTT 1
Pentagon
W3shingtoi)C 2J330-5190

DL-!

SAF/AQSC
Pentagon 4D-267
Wahington DC 20330-1000

FLeet Analysis Center
GIDEP Operations Center
ATTN: Mr. E. Richards
Code 30GI
Corona CA 91720

HQ AFSC/XTS
Andrews AF3 MD 20334-5000

4 SACI3C/PT
OFFUTT AF3 NE 63113-5001

DTESA/RQE

ATTN: Mr. Larry G.McOanus
Kirtland AF9 NM 37117-5000

DL-2

HO TAC/DRIY I
ATTN: Mr. Westerman
Langtey AF3 VA 23665-5001

HO TAC/DOA I
Langtey AF VA 23665-5001

H2 TACIDRCk 1

LangLey AF3 VA 23665-5001

ASD/ENEMS 2

Wright-Patterson AFC OH 45433-6503

SM-ALC/MACEA I

ATTN: Danny McCLure
BLDG Z5ON
McCLettan AFB CA 95652

ASD/AFALCfAXAE 1

ATTN: W. H. Dungey
Wright-Patterson AF3 OH 45433-6533

WqDC/AAAI 1

Wright-Patterson AF3 OH 45433-6533

AFIT/LDEE
3uilding 640, Area B
Wriqht-Patterson AFB OH 45433-6583

WRDC/MLPO
wriqht-Patterson AF8 OH 45433-6533

DL-3

WRDC/MLTE

Wright-Patterson AFB OH 45433

WRDC/FIES/SURVIAC

Wrigqht-Oatterson AF9 ON 45433

AAMRLIHE

Wright-Patterson AF3 OH 45433-6573

Air Force Human Resources Lab
Technical Documents Center

AFHRL/LRS-TDC

Wright-Patterson AF3 OH 45433

AFW I /nT-,

Williams AF9 AZ 85240-6457

A JL/LSE
MaxwelL AF3 AL 36112-5564

HQ Air Force SPACECOM/XPYS

ATTN: Dr. William R. Matoush
Peterson F3 CO 80914-5001

Defense Communications Engr Center

Technical Library
1960 WiehLe Avenue
Reston VA 22090-5500

DL-4

C3 Division Development Center 2
Marine CorDs
DeveLopment i Education Command

Code DIOA

Quantico VA 27134-5030

AFLMCILGY
AF Lojistics Management Center

Chief, System Engineering Division

Gunter AFS AL 36114

US Army Strategic Defense Command

DASD-4-MPL
PO 3ox 153)

4intsviLLe AL 35807-3301

Commanding Officer
Naval Avionics Center
Li orary
D/765

Indianaoolis IN 46219-213Q

Commanding Officer
Naval Traininq Systems Center
Technical Information Center
3jilding ?368
Orlando FL 32313-71C0

Commandini Officer
NavaL Ocean Systems Center
Technical Library
Code vn, 4 23

San Dielo CA 2152-5000

Conmandini Officer
Nivii 4eaooris Center
Technical Library
Code 433
China Lake CA ?3555-6001

Superintendent
N3vaL Post Griduate School

Code 1424
Monterey CA 93943-5000

CI ammli in Officer 2
Naval Research Laboratory
Cade '5K7
Washinitin DC ?0375-500'1

DL-5

S-o- e & Naval warfare Systems COM 4
tMW 153-3DP
ATTN: P. Savarese

Washington DC 20363-5100

Commanding Officer 2
US Army Missile Command
Redstone Scientific Info Center
AMS4I-RD-CS-R (Documents)
Redstone Arsenal AL 359q3-5241

Advisory Grouo on Electron Devices 2
Technical Info Coordinator

ATTN: Mr. John Hammond
201 Varick Street - Suite 1141
New York 14Y 10314

Los Alamos Scientific Laboratory
4eoort Librarian
ATTN: Mr. Dan 3aca
'9 Qox 1563, MS-P364

Los Alamos NM 17545

RPid Caroirition
Technical Library
ATTN: Ms. Doris Helfer

P0 Box -133
Sinta Monic3 CA 9040 6 -213R

AEDC Library

Technical Reoorts File
1AS-1 01
Arnold AFS TN 373F9-9Q9P

U;AG

ASH-PCA-CRT
Ft. Huichuc3 AZ 35613-6001

1339 EIGIEIET
ATTN: Mr. Kenneth W. Irby

<Pesler AF3 MS 39534-6349

J TFPO-TD
Director of Advanced Technology
ATTN: Dr. Raymond F. Freeman
15J0 Planning Research Drive
McLean VA 2?102

DL-

HO ESC/CWPP 1
San Antonio TX 78243-5000

AFEWCIESRI 3
San Antonio TX 76243-5000

435 EIG/EIR 1
ATTN: M Craft
Griffiss AF9 NY 13441-6349

ESD/ XTP 1
H3nscom AF3 MA 01731-5009

ESD/AVSE 2
3jiLding 1704
H3nscom AF3 MA 01731-50r0

A C SD SYS-2 1
H3nscor AF3 MA)1731-5000

Software Engineering Institute 1
Joint Program Office
ATTN: Major Dan Burton, USAF
Carnegie "eLlon University
Pittsburgh PA 15213-3390

Director 1
NSA/CSS
T5 1 3/TDL
ATTN: Mr.)avid Marjarum
Fort Georqe G. Meace MD 20755-6000

DL-7

Director
NSA/CSS
W166
Fort George G. Meade MD 20755-6003

Director
NSAI CSS

DEFSMAC
ATTN: Mr. James E. Hittman
Fort George G. Meade MD 20755-6001

Director
ISA/CSS
R5

Fort George G. Meade MD 20755-6000

Director
NSA/CSS

R8
Fort George G. Meade MD 29755-6000

Director
NSAICSS
S21
Fort George G. Meade MD 20755-6003

DL-S

Director 2
NSAICSS
R523
Fort George G. Meade MD 20755-6000

DOD Comouter Security Center
C4/TIC
9800 Savage Road
Fort George G. Meade MD 20755-6001

Honeywell - SSDC
ATTN: Mr. Jeremy Norton
L0009 Boone Ave
MS: Mn63-C040
Golden Valley MN 55427

SDIIS-Pl-BM
ATTN: Cmdr Korajo
The Pentagon
Wash DC 2030L-7100

SDIO/S-PL-3M
ATTN: Caot Johnson
The Pentagon
Wash DC 20301-7003

SDIO/S-Pl-3M
ATTN: Lt CoL Rindt
The Pentagon
Wash DC 20301-7L00

IDA (SDIO Library)
ATTN: Mr. Albert Perretta
LBOI N. Beauregard Street
Alexandria VA 223Ll

SAF/AQSD
ATTN: Maj M. K. Jones
The Pentagon
Wash DC 20330

AFSC/CV-D
ATTN: Lt Cot Flynn
Andrews AFB MD 20334-5000

OL-9

HQ SD/XR
ATTN: Cot Heimach
PO Box 92960
WorLdway Postal Center

Los Angeles CA 90009-2960

HQ SSD/C',r
ATTN: Cot -",qrien
PO Box 92?60
WorLdway Postal Center
Los Angeles CA 90009-2960

HQ SD/CNCI
ATTN; Cot Collins
PO Box 92960
Worldway Postal Center
Los Angeles CA 90009-2960

4Q SD/CNCIS
ATTN; Lt Cot Pennell
PO 3ox 92960
Worldway Postal Center

Los Angeles CA 90009-2960

ESD/AT

ATTN: Cot Oyan
Hanscom AF PA OL73L-5000

ESDIATS

ATTN: Lt Cot Otdenberg
Hanscom AFB MA 0173L-5300

ESD/ATN
ATTN: Cot Leib
Hanscom AF3 MA 0t731-5000

AFSTC/XPX (Lt Cot Detucci)
KirtLand AFI NM 8l7W

USA SDCIDASD-H-SB (Larry Tubbs)
P. 0. 3ox 1500
Huntsville AL 35807

DL-10

AFSPACECOM/XPD
ATTN: Maj Roger Hunter
Peterson AFB CO 809L4

GE SDI-SEI
ATTN: Mr. Ron Marking
1787 Century Park West
3Luebett PA 194422

MITRE Corp
ATTN: Dr. Donna Cuomo
3edford MAS 01730

SSD/ CNI
ATTN: Lt Cot Joe Rouge
R. 0. Box ?2960
Los Angeles AF9 CA 90009-2960

4T3 JPO
ATTN: Maj Don Ravenscroft
FiLcon AF3 CO 30912

Ford Aerospace Corp
c/o Rockwell International
ATTN: Dr. Joan Schulz
1250 Ac3demy Park Loop

Coloralo Springs CO 809L0

Essex Corp
ATTN: Dr. qob Mackie
Himan Factors Research Div
5775 Dawson Ave
GoLet3 CA 93117

Naval Air Development Ctr
ATTN: Dr. "ort Metersky
Code 30D
Warminster PA 189974

RJO Enterorises
ATTN: Mr. Dave Israel
1225 Jefferson Davis HY
Suite 300
Arlington VA 22202

DL-11

GE SDI SEI
ATTN: Mr. Bill Bensch
1707 Century Park West
Bluebell PA 19422

HQ AFOTECIOAHS
ATTN: Dr. Samuel Charlton
Kirtland AF3 NM 87LL7

ESD/XTS
ATTN: Lt Cot Joseph Toole
Hanscom AFB MA 0173L

SDIO/ENA
ATTN: Cot R. Worretl
Pentagon
Wash DC 2930t

USA-SDC CSSD-H-SBE
ATTN: Mr. Doyle Thomas
Huntsville AL 35807

HQ AFSPACECOM/DOXP
ATTN; Capt Mark Terrace
Stoo 7
Peterson AFB CO 80914

3N Systems & Technology
ATTN: Dr. Dick Pew
70 Fawcett St
Cambridge MA 02t38

ESD/ XTI
ATTN: Lt Cot Paul Monico
Hanscom AFB MA 0L730

CSSD-H-S9
ATTN: Mr. Larry Tubbs

Commander USA SOC
PO Box 1500
HintsviLte AL 35307

DL-12

USSPACECOMIJ5B
ATTN: Lt CoL Harold Stanley
Peterson AFB CO 809t4

NT3 JPO

ATTN: Mr. Nat Sojouner
FaLcon AF9 CO 309L2

RADC/COT
ATTN: Mr. Ronatd S. Raposo
Griffiss AF3 NY 1344t

3onnie McDanieL, MDE

313 Franklin St
HuntsvilLe AL 3580L

The Aerosoace Corporation 5

ATTN: Mr. George biLtey
ML-045
PO 3ox 92957
Los Angeles CA 90530

AF Space CommandIXPXIS
Peterson AF3 CO 809t4-5001

AF3TECIXPP
ATTN: Capt Wrobet

Kirttand AF9 N4 87117

Director NSA (V43)

ATTN: George Hoover
9300 Savage Road
Ft George G. Meade MD 20755-6000

SSD/CNIR
ATTN: Caot Brandenburg
P3 8OX 92960-2960
LOS ANGELES CA 90009-2960

DL-13

Advanced System Technologies
ATTN: Duane R. Ball
5L3 Leesburg Pike, Suite 514
F3lts Church VA 2204L

Odyssey Research Associates, Inc.
ATTN: Doug Weber
3JtA Harris B. Dates Dr
Ithaca NY L4850-t3L3

SRI International
ATTN: Teresa Lunt, BNL69
333 Ravenswood Ave
Menlo Park CA 94025

SRI International
ATTN: Mathew Morgenstern, BN L62
333 Ravenswood Ave
Menlo Park CA 94025

George Mason University
ATTN: Prof Sushi(Jajodia
ISSE Department
4400 University Drive
Fairfax VA 22030-4444

GE (Advanced Technology Labs)
ATTN: L. D. Alexander
3tdg 145-2, Route 38
Moorestown NJ 08057

Concurrent Computer Corp
ATTN: E. Douglas Jensen
1 Technology Way
Westford MA 01886

Xerox Advanced Info Technology
ATTN: garbara BLaustein
7900 West Park Dri, Suite 400
McLean VA 22102

Dove Electronics, Inc.
ATTN: John Dove
227 Liberty PLaza
Rome NY t3440

DL-14

W. W. Chu Associates
ATTN: Dr. Wesley Chu
16794 Charmel Lane
Pacific Palisades CA 90272

U. S. Army CECO'4
ATTN: Lakshmi V. Rebbapragada
Center for C3 Systems
A4SEL-RD-C3 -I'
Ft Monmouth NJ 07703

M/A 473
4ASA-Langley Research Center
ATTN: Nicholas D. Murray
Hampton VA 23665

Trusted Information Systems, Inc.
ATTN: Steve W3lker
3)60 W3shington Rd
Glenwood MD 21738

Advanced Decision Systems
ATTN: Andrew Cromerty
15)0 Plymouth St
Mountain View CA 04043

Gemini Computers Inc.
ATTN: Dr. Roqer Schell
ICS Division
PO Box 222417
Carmel CA 93922

Naval Ocean Systems Center
ATTN: Les Anderson
27L Cataliia BLvd, Code 4W3
San Diego CA 92151

Cirnigie mellon University
Deot of Computer Science
ATTN: Ray Clirk
Schenley-Wean Hall
Pittsurgh PA 15213-3390

Univ of Maryland
Dept of Computer Science
ATTN: Ashok K. Aqrowola
College Park MD 20742

DL-1 5

The Plitre Corporation
ATTN: Myra Jean Prelle
BurLington R~d
Bedford MA 01730

DL-16

MISSION

Of
Rome Air Development Center

RADC plans and executes research, development, test and
selected acquisition programs in support of Command, Control,

Communications and Intelligence (C3I) activities. Technical and
engineering support within areas of competence is provided to
ESD Program Offices (POs) and other ESD elements to
perform effective acquisition of C-I systems. The areas of
technical competence include communications, command and
control, battle management information processing, surveillance
sensors, intelligence data collection and handling, solid state
sciences, electromagnetics, and propagation, and electronic
reliability/maintainability and compatibility.

